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Abstract Peripheral Arterial Occlusive Disease (PAOD) management is essential
in combating atherosclerosis-induced blockages, requiring advanced vascular
imaging for accurate diagnosis and treatment. Artificial intelligence-enhanced super-
resolution (SR) techniques are increasingly recognized for improving vascular
imaging and decision support, enhancing PAOD treatment accuracy and efficacy.
PAOD, caused by atherosclerosis, reduces blood flow to the lower extremities.
Computed tomography angiography (CTA) images are used for evaluating PAOD,
offering detailed visualization of vascular structures. This study used CTA images,
the most common modality for daily PAOD evaluation, to demonstrate the role
of SR techniques in decision support systems, particularly in healthcare. The
research addresses challenges in segmenting CTA images of lower extremity arteries,
highlighting SR techniques’ potential in refining artery segmentation, 3D modeling,
and visualization. Comparing SR models like SRCNN, EDSR, RCAN, SRGAN,
and ESRGAN, the study identifies SRGAN as the optimal choice. These are models
based on deep learning and generative models. Metrics like peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) validate model efficacy. This sophisticated
technology aids healthcare professionals in making smarter decisions, analyzing
complex information, and providing valuable recommendations.
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1 Introduction

Different epidemiological studies have shown that up to 50% of patients with the
PAOD [4] have symptoms of cerebrovascular or cardiological disease, a real cause
of patient morbidity and mortality [24]. PAOD describes a narrowing (stenosis) or
complete blockage (occlusion) of the arteries of the arm or leg (see Fig. 1) [4].
PAOD can cause leg pain when walking (intermittent claudication), which may go

Fig. 1 3D visualization of a PAOD case of a patient. The arrows indicate the begin-ends of the
occlusion.

away with rest. Over time, the disease can worsen and there may be pain even at
rest, leg ulcers, and, in severe cases, gangrene, which may lead to amputation of
the affected limb [4]. Consequently, in patients with PAOD, atherosclerotic stenosis
is likely to appear in other areas of the body, such as in the coronary arteries and
cerebral arteries. Mortality and morbidity caused by PAOD will depend largely on
poor circulation in these areas rather than on limb ischemia [4, 1].

The best way to visualize vascular structures for patients with PAOD is through
advanced imaging techniques such as computed tomography angiography (CTA),
magnetic resonance angiography (MRA), or duplex ultrasoundD [22]. These imaging
modalities provide detailed visualization of the vascular structures in the affected
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limbs, allowing healthcare providers to assess the extent of arterial narrowing or
blockages and plan appropriate treatment strategies. In this work, the study was
made using CTA images, which are the most used image modality for daily and
real-world evaluation of PAOD patients. On the other hand, in the context of PAOD,
thee-dimensional (3D) reconstruction and visualization of vascular structures using
CTA can provide a comprehensive view of the arteries, including the location
and severity of stenosis or occlusionsg [26]. This 3D model can help clinicians
in planning interventions such as angioplasty, stenting, or bypass surgery [38]. SR
techniques have the ability to improve the quality of 3D models in regions with tiny
blood vessels; conventional SR methods, such as interpolation, encounter limitations,
especially with low-resolution images. Despite difficulties such as data acquisition
and processing time, the integration of 3D rendering significantly improves the
assessment and treatment of PAOD by providing accurate anatomical information
and promoting collaborative decision making among healthcare professionals [21].
Moreover, beyond its utility in PAOD, 3D modeling and visualization play a
crucial role in surgical planning, simulation, training, and augmented reality
applications [33].

Conversely, the tiny diameter of some areas of blood vessels poses significant
challenges for 3D rendering, requiring careful consideration of several factors.
Ensuring high spatial resolution through techniques like computed tomography
angiography (CTA) or magnetic resonance angiography (MRA) is vital for capturing
intricate details accurately, as smaller vessels require more data points for precise 3D
reconstruction. AAdditionally, the use of noise reduction methods, advanced vessel
segmentation algorithms or super-resolution (SR) techniques is crucial to improve
image resolution. Still, the visualization of small blood vessels, especially with
atherosclerosis, is a challenge [18]. Healthy arteries show a uniform CT density due
to contrast-enhanced blood, which has higher x-ray attenuation than soft tissues
and lower than bone. Diseased arteries vary in x-ray attenuation: non-calcified
plaque matches soft tissues, while calcified plaque resembles bone. Additionally,
factors like image noise, scanning artifacts, limited resolution, and variability
in arterial opacification must be considered. Despite these challenges, ongoing
advancements in imaging technology and software promise continued improvements
in 3D visualization capabilities. SR techniques, in particular, have the potential to
enhance the quality and definition of 3D models, especially in regions with tiny
blood vessels. Nevertheless, conventional SR techniques like interpolation methods
have limitations, particularly with low-resolution images.

This chapter specifically delves into the effectiveness of various SR techniques
based on deep learning and generative models, evaluating their impact on improving
the diagnosis and well-being of patients suffering from PAOD by processing
CTA images of the lower extremities. The application of these advanced SR
techniques in CTA imaging is ready to improve diagnostic accuracy and treatment
planning, which will ultimately benefit patients. By enhancing the accuracy of
3D visualization, these techniques aim to provide clinicians with more robust
decision support tools. The chosen models encompass a range of SR techniques,
including the Super-Resolution using Convolutional Neural Network (SRCNN 915
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and SRCNN 955 [7]), Enhanced Deep Residual Networks for Single Image Super
Resolution (EDSR)[20], Residual Channel Attention Networks (RCAN)[36], Super-
Resolution using Generative Adversarial Network (SRGAN)[29], and Enhanced
Super-Resolution Generative Adversarial Networks (ESRGAN)[34]. The studied
methods, typically used for processing natural color images, have been adapted
for CTA image processing. In essence, this chapter underscores how technology is
evolving to assist us in making smarter choices. By addressing the challenges in
visualizing small blood vessels, particularly in patients with atherosclerotic disease,
and leveraging advanced imaging techniques and SR methods, we highlight the
potential for significant improvements in medical diagnostics and decision support,
ultimately enhancing patient care.

The paper follows a structured approach with five key sections: (1) Section 2
provides a literature review and research context, (2) Section 3 details the
methodology encompassing dataset and SR techniques, (3) Section 4 presents our
findings, (4) Section 5 engages in an in-depth discussion of results and their relevance
to existing knowledge, and concludes the paper while proposing future research.

2 Related Works

Single Image Super-Resolution (SISR) is a classic problem in digital image
processing. Its goal is to increase the resolution of a low-resolution image to
obtain a higher-resolution image by restoring high-frequency information. Initially,
most SISR reconstructions are based on sample learning; for example, one of the
typical methods is the sparse coding method [7]. This approach generally extracts
image features first and encodes them into a low-resolution dictionary. The sparse
coefficients are passed to the high-resolution dictionary to reconstruct the high-
resolution parts, which are then aggregated as a result. These SR methods focus on
dictionary learning and optimization or model building and are rarely optimized or
considered as a unified optimization framework focusing on the utility of Generative
models.

Convolutional Neural Network (CNN)-based methods have greatly improved the
performance of SISR [39]. Numerous studies have emerged to converge faster
and perform better. Dong et al. pioneered the use of CNNs to solve the SISR
problem in [39]. They showed that conventional sparse coding-based SR methods
existing at the time can be reformulated into a deep CNN, achieving superior
performance. This model is divided into three phases, each performed by a
convolution: feature mapping, nonlinear feature mapping, and reconstruction to a
high-resolution representation. Below a brief description of the most relevant SR
techniques used recently which involve CNN.

Dong et al. introduced the SRCNN, a deep learning technique that can
reformulate the conventional sparse coding-based SR methods and achieve superior
performance [7]. This success led to the development of numerous methods using
deep learning in the SR problem. Residual models such as Very Deep Convolutional
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Networks (VDCN) [16], Deeply-Recursive Convolutional Networks (DRCN) [17],
and Deep Recursive Residual Network (DRRN) [30] emerged, building the neural
network based on units or blocks that learn through residual functions, which
represent the difference between the original and processed image. Residual networks
can converge faster, requiring fewer epochs and providing a higher Peak Signal-to-
Noise Ratio (PSNR) [15] in training, which quantitatively measures the quality of
the image reconstruction.

Subsequently, several models have emerged that implement novel scaling
techniques for low-resolution to high-resolution image reconstruction, enabling
the use of low-resolution images as direct input. Some approaches employ a
de-convolution layer at the end of the network that directly maps the original
low-resolution image to the high-resolution image [8]. Some others approaches
extract features from the low-resolution space and maps them to the high-resolution
space [28]. These scaling techniques have been leveraged by several residual models,
which use residual scaling methods to improve the stability and performance of
deep networks. For instance, some models introduce dense hop connections into a
very deep network to enable the efficient combination of low-level and high-level
features [32]. Alternatively, some models utilize a Residual Dense Block (RDB) as
the central component in network construction, where each RDB consists of densely
connected layers and local feature fusion with local residual learning [37].

Recent advancements in the field of SR have led to the introduction of Generative
Adversarial Networks (GAN) [12]. GANs consist of a generator that produces SR
images and a discriminator that evaluates whether the generated image is real or
artificial. A good approximation of the high-resolution image is assumed if the
discriminator cannot distinguish between the generated image and the original
image [29]. Researchers have also developed a new generator that uses long-
range connections to efficiently transfer information between remote layers [25]. In
addition, a new function in GAN is used as a discriminator to enable the generator to
retrieve more detailed textures by learning to infer which image is more realistic [34].
Furthermore, a residual-in-residual (RIR) structure has been proposed to address the
low-frequency information removed through multiple hopping connections. This
structure incorporates a Channel Attention (CA) mechanism that adaptively rescales
channel characteristics by considering channel inter-dependencies [36].

In this paper we have divided in several groups of SR-algorithms based on
their network architectures and characteristics within the context of super-resolution
techniques. The algorithms are categorized into four sets, each focusing on specific
aspects of network design and methodology.

2.1 Residual-based models

Image SR using Very Deep Super-Resolution (VDSR) [16] convolutional networks
demonstrate that by cascading small filters many times into a deep network structure,
contextual information about large image regions is efficiently exploited. They use
residual learning and extremely high learning rates to quickly optimize a very deep
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network. Convergence speed is maximized and they use gradient clipping to ensure
training stability.

The DRCN [17] is a network with a deep recursive layer (up to 16 recursions)
achieving improved performance without introducing new parameters for additional
convolutions. Because learning is very difficult with a standard gradient descent
method, they proposed two extensions to alleviate the difficulty of training: recursive
supervision and skipping connections (shortcuts).

Subsequently, the Deep Recursive Residual Network (DRRN) [30] proposes a
deep model (up to 52 convolutional layers) that adopts residual learning to reduce
the difficulty of training in a deep networks, improving the performance of the SISR
models defined so far, while using fewer parameters.

2.2 Scaling methods

Dong et al. improved the performance of their SRCNN model with single image
of giving it practical use in applications demanding real time (24 fps), achieving
improved quality and 40 times faster speed. The proposed model, called Fast Super-
Resolution Convolutional Neural Network (FSRCNN) [8], improved three aspects:
first, it uses a de-convolution layer at the end of the network that directly maps the
original low-resolution image to the high-resolution one; second, they reduced the
dimension of the input function by reformulating the mapping layer; and third, they
adopted smaller filters but more mapping layers.

The Efficient Sub-Pixel Convolutional Neural Network (ESPCN) [28] extracts
the feature map in low-resolution space, without having to scale the low-resolution
input to high-resolution space, while reducing the computational complexity of the
overall SR operation. In addition, they introduced a sub-pixel convolutional layer,
capable of learning a vector of filters to scale the final low-resolution feature map to
the high-resolution output.

2.3 Residual models integrating new scaling methods

Residual models integrating new scaling methods represent a combination of both the
residual model-based approach and the scaling model-based approach. It’s a way of
incorporating the benefits of both techniques to improve the quality and performance
of super resolution algorithms for images. The residual model contributes its ability
to learn fine details and features, while the new scaling methods contribute techniques
for enhancing image resolution and generating high-quality results. In this sense the
following methods described bellow integrate both approaches mentions before, the
residual model-based and scaling model-based.

The Enhanced Deep Super-Resolution (EDSR) [20] residual network model was
designed with an improvement of the SRResNet model, achieving better results
by eliminating unnecessary modules while obtaining a more compact model. They
used residual scaling techniques to give stability to the deep model. This method
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showed superior performance over state-of-the-art methods on benchmark datasets,
becoming the winner of the NTIRE2017 SR Challenge [31].

Another network for SISR image reconstruction is the Laplacian Pyramid
Super-Resolution Network (LapSRN) [19]. This model performs a progressive
reconstruction of sub-band residuals from high-resolution images. At each level of the
pyramid, the model takes coarse resolution feature maps as input, predicts the high-
frequency residuals, and uses transposed convolutions to sample at the finer level.
By not requiring bicubic interpolation as a preprocessing step, it drastically reduces
computational complexity. On the other hand, network training is performed with
deep supervision using a robust loss function, achieving high quality reconstruction.

Tong et al. [32] present a novel model for single image SR called SRDenseNet,
which introduces dense hopping connections in a deep network. Feature maps
from each layer are propagated to all subsequent layers, providing an efficient way
to combine low-level and high-level features in order to improve reconstruction
performance. Dense hop connections allow short paths from the output directly to
each layer, alleviating the vanishing gradient problem of very deep networks. They
also integrate de-convolution layers into the network to learn up-sampling filters and
speed up the reconstruction process.

The Residual Dense Network (RDN) [37] was proposed to solve one of the
problems of deep CNN-based SR models, which is not fully exploiting the use of
hierarchical features of low resolution images, having a relatively low performance.
RDN defines a very deep network for SR images, with a Residual Dense Block
(RDB) as the core element. Each RDB consists of densely connected layers and
Local Feature Fusion (LFF) with Local Residual Learning (LRL). The states of all
RDBs are concatenated, allowing LFF to obtain local dense features and adaptively
retain information. In addition, LFF achieves very high growth rates, stabilizing the
formation of larger networks.

Finally, the deep Residual Channel Attention Network (RCAN) [36] has a Residual
In Residual (RIR) structure that causes numerous low-frequency information to be
removed through multiple hopping connections, allowing the underlying network
to concentrate on learning high-frequency information. In addition, it defines a
Channel Attention (CA) mechanism to adaptively rescale channel characteristics by
considering channel interdependencies.

2.4 Generative adversarial networks

SR Using a Generative Adversarial Network (SRGAN) [29] is the first model that
proposes a Generative Adversarial Network (GAN) [12] for SISR. This framework
is capable of inferring natural photographic images for ×4 magnification factors.
In a GAN model there is a generator that creates SR images and a discriminator
that must distinguish whether the high-resolution image is true or artificial. If the
discriminator sees no difference between the estimated high-resolution image and
the true high-resolution image, the estimate is assumed to be a good approximation
of the high-resolution image. The authors create as a generator the SRResNet model,
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a residual network of 5 blocks each composed of two conventional blocks (Conv-
BN-ReLU).

Another GAN model is the SR with Feature Discrimination (SRFeat) model [25].
It develops a new generator that uses long-range hop connections so that information
between remote layers can be transferred more efficiently. Moreover, it uses an
image discriminator and a feature discriminator; the latter encourages the generator
to produce high-frequency structural features free of noise artifacts.

The Enhanced Super Resolution Generative Adversarial Network (ESRGAN) [34]
model improves the visual quality of its predecessor SRGAN model. They present a
generator with a multi-block RRDB (Residual in Residual Dense Block) architecture,
without Batch Normalization (BN) layers. They use a relativistic GAN as a
discriminator, capable of learning to infer whether one image is more realistic than
another, instructing the generator to retrieve more detailed textures.

2.5 Comparison of Super-Resolution Models selected from literature

This section provides a concise overview of several SR techniques based on deep
learning and generative models. The models were adapted to use CTA, implemented,
evaluated and analyzed, as these models were normally used for biological image
processing. In previous subsection we presented a classification of these models
we can resume in Table 1. Each model evaluated were categorized based on their
architectural characteristics and methodology, as it provides a structured approach for
understanding their capabilities. The specific strengths and characteristics of these
methods align with the challenges of enhancing vascular structure visualization in
CTA images.

Table 1 Comparison of SR Models evaluated for CTA images, based on their network architectures
and characteristics.

Model Convolutional Residual GAN
model-based model-based model-based

SRCNN915 X
SRCNN955 X
EDSR X X
RCAN X X
SRGAN X X
ESRGAN X X

3 Materials and Methods

3.1 Dataset

Supervised learning has a distinguishing feature: it relies on annotated training
data, which refers to data that a human subject matter expert has analyzed and
labeled [6]. The supervised learning algorithms implemented for this research
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generalized patterns to classify unlabeled data. The data used in this study were
anonymized CTA medical images of lower extremities in DICOM (Digital Imaging
and Communications in Medicine) standart [3]. Computed Tomography (CT) is a
medical imaging technique that produces anatomical slices or sections for diagnostic
purposes using X-ray radiation [5]. A CT image is comprised of a series of cells
known as voxels. Each voxel is assigned a value corresponding to a density or
brightness level, reflecting the material or tissue attenuation in the represented spatial
area on the Hounsfield scale [2]. CTA serves multiple purposes, including detecting
arterial aneurysms, blockages, blood clots, and PAOD [10].

Fig. 2 Cell selection for training and validation. If 600 slices (on average) are selected in a
study and from each slice 24 block cells are used, we have about 14,400 64x64 pixel images for
training/validation the SR models.

The images obtained by CTA in this study are volumetric data of size 512×512
pixels per slice. Due to the large computational demands of deep learning networks,
64×64 blocks were used for training. The selected block is used as an output image
(target), while the input is a bicubic-downsampled version of the same block for
testing purpose.

3.2 Image selection

The DICOM model follows a hierarchical structure, where a patient can have one
or more studies, each containing several series comprising composite objects like
images and presentation states [11]. In this study, we selected the series that included
CTA images of the lower extremities from each computed tomography study. We
manually removed the initial and final cuts, keeping only the relevant images of
interest, which spanned from the genitalia to the ankle. On average, each study/series
consisted of about 600 images. Each studey was anonymized. To address memory
consumption during the training of SR models, we divided the 512x512 pixel for
each slice into smaller 64x64 pixel per block cells. This division strategy prevents
memory overflow and ensures smooth execution on workstations. However, since
the area under study has specific characteristics, many of these cells do not contain
relevant information for the learning process. Therefore, we only selected the cells
that contribute the most informative content, as depicted in Figure 2.
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3.3 Development Tools

In this study, we used Python as the programming language, along with various
packages that facilitate the implementation of artificial intelligence, including
Pandas, Numpy, TensorFlow, Keras, sci-kit-learn, and OpenCV-python. We tested
the algorithms using Jupyter Notebook. For handling DICOM images, we used the
Pydicom library.

The 3D modeling of the original studies and those obtained after applying the
SR method was performed with 3D Slicer [9]. This tool is an open-source software
designed for the visualization, processing, segmentation, registration, and analysis
of 3D medical, biomedical, and other images and meshes.

3.4 Evaluation metrics

Any processing performed on an image can cause a significant loss of information
or quality. Several metrics allow to evaluate such loss. PSNR, related to Mean
Square Error (MSE), evaluates the quality of the image reconstruction by numerically
comparing the original image and the image generated by the reconstruction [27];
it gives a rough estimate of the human perception of the reconstruction quality. Its
measure is in decibels (dB), and its value tends to infinity, so the higher it is, the
better the quality of the generated image. On the other hand, a lower PSNR value
means a big numerical difference between images.

SSIM is a model based on the perception of the human visual system. It measures
the similarity between the original and reconstructed image by considering structural
information, luminance, and contrast [15]. The SSIM index is a decimal value
between -1 and 1, with 0 indicating no structural similarity and 1 indicating a
perfectly similar structure, which is achieved in the case of two identical images [23].

3.5 Super-resolution CNN models applied to CTA images

The successful application of deep learning in the SR problem has prompted the
development of numerous methods. In this paper, we compared and adapted different
SRCNN methods for lower extremity from CTA images. We employ the same
loss functions and optimizer as the original authors. We also calculate metrics
mentioned in the previous section to quantitatively evaluate the obtained results,
including the maximum PSNR [15] and the SSIM [23]. It is worth to mention that
in our implemented models, the final convolution, responsible for reconstructing the
output image, generates a one-dimensional feature map due to the single-channel
(monochrome) images, since for these CTA data are gray-level images. Next, we
provide the architecture description for each SR model implemented and evaluated
in this work.

Super-resolution convolutional neural network (SRCNN) In 2014, Dong et al.
[7] was the first to use the deep learning method to solve SR problems in natural
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images. Their method performs direct learning by creating an end-to-end mapping
between low-resolution and high-resolution images. They use a CNN that takes the
low-resolution image as input and generates the high-resolution image. Fig. 3 shows
the architecture of SRCNN 9-1-5 adapted to CTA images. Initially, the low-resolution

Fig. 3 Implementation scheme of the SRCNN 9-1-5 model. Each convolution is defined by the
number of features, the size of the convolution matrix (kernel), and the convolution step (stride).

image is pre-processed by enlarging it to the size of the high-resolution image
resulting from bi-cubic interpolation. The end-to-end mapping learning consists
of three operations, each performed by a convolution. The first extracts patches
from the low-resolution image, each represented as a high-dimensional vector
representing image features. It then performs a nonlinear mapping of the vectors
to other high-dimensional vectors, defining another set of feature maps. And finally,
it reconstructs the high-resolution image by aggregating the previous high-resolution
patch representations. In 2015, Dong. et. al published version 3 of the paper [7], where
they generalize the second step of their method by applying larger filters, thereby
achieving better learning results. Fig. 4 shows the architecture of the SRCNN 9-5-5
model.

Enhanced Deep Residual Networks for Single Image Super-resolution
(EDSR) Based on the SRResNet [29], it comprises a sequence of blocks (ResBlock)
that consist of a few layers and end with an image scaling block, as depicted in
Fig. 5. In contrast to SRResNet, the authors remove the Batch Normalization (BN)
layers, significantly enhancing performance without compromising result quality.
As a result, they are able to construct deeper networks with superior performance
compared to conventional Residual Networks (ResNet) [14]. However, the network
training became numerically unstable as the number of feature maps increased
beyond a certain threshold. This issue was solved by applying a residual scale with
a factor of 0.1 in each block (represented by the ’Mult 0.1’ layer in Fig. 5). The final
block (Upsample ×2) carries out a ×2 scaling to obtain the high-resolution image. A
sequence of 2 such blocks would be used in the ×4 architecture.
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Fig. 4 SRCNN 9-5-5 model architecture.

Fig. 5 EDSR model architecture

Residual Channel Attention Networks (RCAN) The Residual Channel
Attention Networks (RCAN) model [36] consists of four main parts: shallow
feature extraction, residual deep feature extraction (using RIR), scaling module,
and reconstruction module. The shallow feature extraction module employs a single
convolutional layer. The deep feature extraction involves the development of a new
module referred to as the Residual-in-Residual (RIR). This RIR module, which
consists of multiple residual groups (RGs), uses a deep residual structure to facilitate
the extraction of deep features. The scaling module is carried out using the module
proposed in ESPCNN [28], which has proved to be one of the most widely used and
a convolution layer for the final reconstruction. This structure allows the training of
very deep convolutional neural networks (with more than 400 layers).

The RIR module contains Residual Groups (RG) and a long jump connection.
Each RG contains several Residual Channel Attention Blocks (RCAB) and a short
hop connection. Residual groups and long-hop connections allow the bulk of the
network to focus on more informative components of the low-resolution features. The
Channel Attention (CA) mechanism makes the network focus on more informative
features by exploiting the inter-dependencies between feature channels.
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Fig. 6 RCAN model architecture

Super-resolution using generative adversarial networks (SRGAN) In GAN
architectures, the value of PSNR decreases, but the overall perceptual quality
improves. The objective of this work is to acquire SR images with superior structural
quality and generate a dependable 3D reconstruction. Therefore, the researchers
in this work refrain from conducting adversarial training on the GAN models and
instead focus exclusively on training the generator proposed by the model.

The SRGAN [29] (Super-Resolution Generative Adversarial Networks) model
generator, known as SRResNet, is a deep residual network with a hop connection and
diverges from MSE as the only optimization objective. The generator architecture,
shown in Fig. 7, consists of 16 residual blocks formed by two convolutional layers
with small 3×3 convolution matrices and 64-feature maps followed by two batch
normalization layers and ParametricReLU (PReLU, Parametric Rectified Linear
Unit) as the activation function between these pairs of layers. The final sum of
the output and input determines the residual function of the block. The increase
in resolution occurs through the concatenation of ×2 scaling blocks based on the
desired final result. Shi et al. [28] proposed this scaling block which comprises a
3×3 convolution with 256-feature maps, followed by a pixel blender and PreLU
activation function. The final image is obtained by applying a 3×3 convolution and
a single feature map corresponding to the channel present in the images processed.
The ’tanh’ activation function yielded the best results in the conducted tests.

Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN):
The enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) [34]
arises as an improvement of the image quality generated by SRGAN, mainly by
making two modifications to the generator structure: removing all BN layers and
designing a new basic block, called Residual in Residual Dense Block (RRDB),
which combines a multilevel residual network with dense connections, as shown in
Fig. 8.

Removing BN layers has demonstrated improved performance and network
generalizability while also reducing computational complexity and memory usage.
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Fig. 7 SRGAN model architecture

Fig. 8 ESRGAN model architecture.

Furthermore, deep networks exhibit an empirical observation indicating a decreased
likelihood of introducing artifacts.

The new basic block proposed in this RRDB model has a deeper and more
complex structure than the original SRGAN residual block. It has a residual-in-
residual structure where residual learning is performed at different levels using a
dense block on the main path, allowing the network capacity to benefit more from
the dense connections. Another novelty is the residual scaling, multiplying by a
constant 𝛽 between 0 and 1 before adding them to the main path, thus preventing
instability.

4 Results

The training phase of a neural network is crucial in achieving successful outcomes
in deep learning, alongside factors such as the quantity and quality of the data.
This phase plays a pivotal role in ensuring the appropriateness and efficacy of the
produced results.
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In order to perform comparative training between the different models selected
in this work, the same set of images was used for all of them. Two CTA studies
were used, the first study with 596 slices, and 580 slices the second one. The image
selection was performed as specified in section 3.2. Twenty percent (20%) of the
slices were used for validation, the rest for training. Each slice provides a batch of 8
images of 64×64 pixels. Finally, using 7,528 images for training and 1,880 images
for validation. All models were subjected to a 10-epoch training using the parameters
defined by their authors in the published papers.

In the GAN networks only the generator network is trained, since a GAN training
with discriminator brings visual realism to the images but introduces artifacts in the
image [29, 34], especially in tiny structures, which could affect its use for medical
diagnosis [35]. An ×8-scale training was performed for the models (SRCNN 9-5-5)
that computationally allowed it for the resources we had available, but the quantitative
and qualitative results were so poor that they did not deserve to be shown. The results
of the training performed at ×2 and ×4 scale for all selected models are shown below.

The bicubic interpolation is not a neural network model but a mathematical model
used to perform image scaling, and we used it as a reference. For an unknown point in
the enlarged image, its calculated value is a function of the value of the 16 points of
the original image surrounding it and the distance separating it [13]. The diagram of
the bicubic interpolation algorithm is shown in Fig. 9. Still, it has been implemented
as another model thanks to the Keras Lambda function to homogenize the study
and obtain the comparison metrics. Table 2 displays the PSNR and SSIM values for

Fig. 9 Diagram of bicubic interpolation algorithm [13].

scales x2 and x4, from every method studied. The observed trend reveals a decrease
in visual quality starting from the ×4 scale, every model showed better results on
scale x2.

The SRCNN model, characterized by its simplicity with just three convolutions,
demonstrates notable performance compared to the other implemented models for
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this image type. The SRCNN 9-5-5 model, which consists of a 5×5 convolution
matrix in the central convolution, performs lighter better than its sister model (see
Table 2). However, it is not possible to say which of them perform better.

Although the EDSR model was developed as an enhancement of the SRRestNet
model (SRGAN generator), it has exhibited inferior results, particularly at the
×4 scale, where the difference is significantly noticeable both in qualitative and
quantitative terms. Please refer to Table 2 for a detailed presentation of the results.

The authors of RCAN defined in their paper a model configuration of 10 RG with
20 RCAB each. However, after testing several configurations in this study, better
results have been obtained with 2 RGs and 20 RCABs each. These results are shown
in Table 2.

The SRGAN model defines a generator (SRResNet) that has been taken as a
reference in the literature due to its quality, especially at scales ×4 or larger. This
model with momentum equal to 0.5 in the BatchNormalization, as used by the
creators, the PSNR and SSIM were very good, but generated large artifacts in most
of the images for x4 scale and degenerated their 3D representation. But we realized
after several testing than reducing the momentum to 0.2, which, in our case, it does
not generate artifacts at x4 scale and obtains better results, although not as good,
than the RCAN model. The results obtained in the training of this model reflected
in Table 2 showed that on CTA images with the scale x4 it performs better than the
scale x2 compared with RCAN model, as we can see in Table 2, but there was not
so much difference. However SRGAN is slightly better in the scale x4 than RCAN.
As conclusion SRGAN perfomed better than the others models compared including
the RCAN in scale x4 (see Table 2).

The ESRGAN model is considered by the literature as an improvement of its
predecessor SRGAN, using a full GAN (generator-discriminator) training. In this
study only the generator of the models is used for reasons already defined, with 64
features and 23 RRDB blocks. In this case we have worse results than its predecessor,
as can be seen in Table 2.

5 Discussion

The compared models allow obtaining better results at PSNR and SSIM level than
the mathematical scaling models such as the bicubic one. We can observe in Table 2
that, for this type of images with a single channel, at ×2 scale even better results are
obtained than with color images, if we consider the results obtained by the authors
of the models reflected in the literature [7, 20, 29, 34, 36]. Table 2 shows the results
for scale ×2, and x4. The better result for scale x2 was shown by RCAN model, and
for scale x4 the better results is gotten for the SRGAN model. Using the RCAN and
SRGAN models, the best SR models compared for ×2 and ×4 scales, respectively,
we can test the effect of SR on computed tomography angiographic (CTA) images
of the lower extremities. If we perform a 3D representation of the images obtained
we can see how the small arteries gain light due to the effect of the SR, as we can
see in Figures 10, 11, and 12.
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Table 2 Summary table of the results obtained by the applied methods with the metrics obtained
at scales x2 and x4, tested on three different patients in the same arterial area.

Patient 2 Patient 3 Patient 4
Original ROI

x2 scale x4 scale x2 scale x4 scale x2 scale x4 scale
BICUBIC

PSNR 35.93
SSIM 0.9796

PSNR 27.03
SSIM 0.8670

PSNR 35.39
SSIM 0.9746

PSNR 26.37
SSIM 0.8518

PSNR 40.16
SSIM 0.9819

PSNR 32.95
SSIM 0.9415

SRCNN 9-1-5

PSNR 36.66
SSIM 0.9814

PSNR 28.48
SSIM 0.9305

PSNR 36.20
SSIM 0.9753

PSNR 27.49
SSIM 0.8735

PSNR 40.91
SSIM 0.9813

PSNR 34.53
SSIM 0.9433

SRCNN 9-5-5

PSNR 35.71
SSIM 0.9786

PSNR 28.23
SSIM 0.8981

PSNR 35.69
SSIM 0.9746

PSNR 27.84
SSIM 0.8831

PSNR 39.48
SSIM 0.9802

PSNR 33.58
SSIM 0.9422

EDSR

PSNR 37.56
SSIM 0.9868

PSNR 25.70
SSIM 0.8472

PSNR 34.79
SSIM 0.9813

PSNR 24.29
SSIM 0.8362

PSNR 38.22
SSIM 0.9850

PSNR 29.84
SSIM 0.9323

RCAN

PSNR 41.82
SSIM 0.9903

PSNR 31.55
SSIM 0.9422

PSNR 41.16
SSIM 0.9845

PSNR 29.09
SSIM 0.9107

PSNR 46.21
SSIM 0.9865

PSNR 36.32
SSIM 0.9527

SRGAN

PSNR 40.85
SSIM 0.9897

PSNR 31.97
SSIM 0.9500

PSNR 40.50
SSIM 0.9846

PSNR 30.18
SSIM 0.9196

PSNR 44.60
SSIM 0.9860

PSNR 36.36
SSIM 0.9537

ESRGAN

PSNR 35.65
SSIM 0.9789

PSNR 25.45
SSIM 0.8172

PSNR 33.03
SSIM 0.9730

PSNR 25.06
SSIM 0.8166

PSNR 36.65
SSIM 0.9804

PSNR 28.26
SSIM 0.9166
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Fig. 10 3D visualization of the effect of SR (Patient 5). The first row of images the original images,
second row the best result with RCAN model at scale x2, and the third row the best result with
SRGAN model at scale x4.

6 Conclusion and Future Work

In this study, we addressed the limitations of standard CTA in capturing the detailed
morphology of small arteries, particularly in the lower extremities. To overcome
this challenge, we applied advanced super-resolution (SR) techniques to enhance the
three-dimensional (3D) reconstruction and visualization of lower extremity arteries
using standard CTA images. We evaluated various single-image super-resolution
(SISR) models tailored for CTA images, including SRCNN, EDSR, RCAN, SRGAN,
and ESRGAN. Among them, the RCAN (Residual Channel Attention Networks)
and SRGAN (Super-Resolution Generative Adversarial Network) models stood out
as the most effective. RCAN excelled at a two-times (x2) scale, while SRGAN
performed exceptionally well at a four-times (x4) scale. These models have different
objectives, with RCAN focusing on improving high-resolution image quality and
SRGAN specialized in upscaling low-resolution images.

Our findings demonstrate that these SR techniques significantly improved image
quality and enabled the visualization of previously indistinct or imperceptible
arteries, which holds promise for conditions like peripheral arterial occlusive disease
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Fig. 11 3D visualization of the SR effect (Patient 6), also with best results with RCAN and SRGAN
models (x2 ans x4 scale respectively).

(PAOD). This advancement underscores the role of intelligent systems in enhancing
medical diagnostics and decision support. This chapter exemplifies how cutting-edge
technologies in artificial intelligence and machine learning can transform healthcare
by providing clinicians with powerful tools to analyze complex information and
make more informed decisions, showcasing intelligent systems that support decision-
making across various fields.

Future research should explore the application of SR methods to enhance inter-
slice quality in CTA images, as this could provide additional diagnostic insights into
arterial diseases. Despite challenges such as computational cost and time constraints,
our study highlights the potential of SR techniques as a valuable tool for diagnosing
PAOD. By integrating these advanced techniques into clinical practice, we can
improve diagnostic capabilities in vascular imaging, ultimately leading to better
decision-making and patient outcomes.
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Fig. 12 3D visualization of the SR effect (Patient 7), also with best results with RCAN and SRGAN
models (x2 ans x4 scale respectively).
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