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Abstract Peripheral Arterial Occlusive Disease (PAOD) management is essential
in combating atherosclerosis-induced blockages, requiring advanced vascular
imaging for accurate diagnosis and treatment. Artificial intelligence-enhanced super-
resolution (SR) techniques are increasingly recognized for improving vascular
imaging and decision support, enhancing PAOD treatment accuracy and efficacy.
PAOD, caused by atherosclerosis, reduces blood flow to the lower extremities.
Computed tomography angiography (CTA) images are used for evaluating PAOD,
offering detailed visualization of vascular structures. This study used CTA images,
the most common modality for daily PAOD evaluation, to demonstrate the role
of SR techniques in decision support systems, particularly in healthcare. The
research addresses challenges in segmenting CTA images of lower extremity arteries,
highlighting SR techniques’ potential in refining artery segmentation, 3-D modeling,
and visualization. Comparing SR models like SRCNN, EDSR, RCAN, SRGAN,
and ESRGAN, the study identifies SRGAN as the optimal choice. These are models
based on deep learning and generative models. Metrics like peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) validate model efficacy. This sophisticated
technology aids healthcare professionals in making smarter decisions, analyzing
complex information, and providing valuable recommendations.
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1 Introduction

Different epidemiological studies have shown that up to 50% of patients with the
PAOD [3] have symptoms of cerebrovascular or cardiological disease, a real cause
of patient morbidity and mortality [21]. PAOD describes a narrowing (stenosis) or
complete blockage (occlusion) of the arteries of the arm or leg (see Fig. 1) [3].
PAOD can cause leg pain when walking (intermittent claudication), which may go
away with rest. Over time, the disease can worsen and there may be pain even at
rest, leg ulcers, and, in severe cases, gangrene, which may lead to amputation of
the affected limb [3]. Consequently, in patients with PAOD, atherosclerotic stenosis
is likely to appear in other areas of the body, such as in the coronary arteries and
cerebral arteries. Mortality and morbidity caused by PAOD will depend largely on
poor circulation in these areas rather than on limb ischemia [3, 1].

Fig. 1 3-D visualization of a PAOD case of a patient. The arrows indicate the begin-ends of the
occlusion.

Advanced imaging techniques like computed tomography angiography (CTA),
magnetic resonance angiography (MRA), and duplex ultrasound are key to
visualizing vascular structures in PAOD patients [19]. These methods allow detailed
assessment of arterial narrowing or blockages, essential for treatment planning.
This study uses CTA images, the most common modality for PAOD evaluation.
Three-dimensional (3-D) reconstruction from CTA images helps visualize arteries,
including stenosis or occlusion, aiding interventions like angioplasty or bypass
surgery [23, 34]. SR techniques enhance 3-D models, particularly in areas with
small blood vessels, where traditional methods like interpolation struggle with
low-resolution images. Despite challenges in data acquisition and processing, 3-
D rendering improves PAOD assessment by providing accurate anatomical details
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and supporting collaborative decision-making [18]. Beyond PAOD, 3-D modeling is
useful in surgical planning and augmented reality applications [29].

Small blood vessel diameters present significant challenges for 3-D rendering,
requiring high spatial resolution through CTA or MRA for accurate detail capture.
Noise reduction, advanced vessel segmentation, and SR techniques are essential
for improving image quality. Visualizing small vessels affected by atherosclerosis
remains difficult [15], as healthy arteries have uniform CT density, while diseased
arteries show varying attenuation. Image noise, scanning artifacts, and arterial
contrast variations complicate visualization. Despite these challenges, advances
in imaging technology are improving 3-D rendering. Super-resolution techniques,
particularly for low-resolution images, can significantly enhance the quality of 3-D
models.

This chapter examines the impact of deep learning-based SR techniques on the
diagnosis and care of PAOD patients through CTA image processing. Advanced
SR techniques in CTA imaging are poised to improve diagnostic accuracy and
treatment planning by offering precise 3-D visualizations. These techniques support
clinicians with a robust decision support system (DSS). The models studied include
SRCNN [5], EDSR [17], RCAN [32], SRGAN [25], and ESRGAN [30], adapted for
CTA image processing. The chapter highlights how SR techniques can improve the
visualization of small blood vessels in atherosclerotic patients, advancing medical
diagnostics and decision support, ultimately enhancing patient care. The hypothesis
is whether these models effectively enhance the resolution of vascular structures in
the lower extremities.

The paper follows a structured approach with five key sections: (1) Section 3
provides a literature review and research context, (2) Section 4 details the
methodology encompassing dataset and SR techniques, (3) Section 5 presents our
findings, (4) Section 6 engages in an in-depth discussion of results and their relevance
to existing knowledge, and concludes the paper while proposing future research.

2 Impact of including SR techniques in DSS in health-systems

Super-resolution (SR) techniques are crucial in Decision Support Systems (DSS)
for medical imaging, enhancing the visualization of vascular structures in CTA
images. These techniques improve image resolution, making small arteries clearer,
which is vital for accurate diagnosis and treatment planning, especially in conditions
like PAOD. SR helps reveal pathologies not visible in lower-resolution scans,
improving diagnostic accuracy and enabling earlier interventions. Integrating SR
into automated analysis workflows allows machine learning models to detect
anomalies and assess vascular health, enhancing clinical decision-making. SR can
be seamlessly incorporated into clinical imaging workflows, providing enhanced
CTA images with minimal manual intervention. Optimized for real-time processing,
SR algorithms support timely decision-making, especially during procedures like
angiography. SR’s integration into clinical environments can be facilitated through
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user-friendly interfaces, improving workflow efficiency. By improving image quality,
SR techniques reduce the need for repeat imaging, saving costs and minimizing
patient exposure to radiation. Faster, more accurate diagnoses streamline the
diagnostic process, enhance patient satisfaction, and lower operational costs. SR
also optimizes resource use by allowing more efficient allocation of medical staff,
ultimately improving patient outcomes and reducing long-term healthcare costs

3 Related Works

Single Image Super-Resolution (SISR) aims to increase the resolution of low-
resolution images by restoring high-frequency information. Most SISR methods,
like sparse coding [5], extract key features from the image and encode them into
a low-resolution structure. This compact representation captures essential details
while reducing data size. Sparse coefficients are then passed to a high-resolution
dictionary to reconstruct the image. Traditional SR methods typically do not integrate
generative models into a unified optimization framework, which is a key aspect of
modern approaches. This research evaluates whether generative models effectively
enhance the resolution of vascular structures in lower extremities.

Convolutional Neural Network (CNN)-based methods have greatly improved the
performance of SISR [35]. Dong et al. pioneered the use of CNNs to solve the
SISR problem in [35]. They showed that conventional sparse coding-based SR
methods existing at the time can be reformulated into a deep CNN, achieving
superior performance. This model is divided into three phases, each performed
by a convolution: feature mapping, nonlinear feature mapping, and reconstruction to
a high-resolution representation.

Dong et al. introduced the SRCNN, a deep learning technique that can
reformulate the conventional sparse coding-based SR methods and achieve superior
performance [5]. From that point on, numerous methods employing deep learning
were developed to address the SR problem. Residual models such as Very Deep
Convolutional Networks (VDCN) [13], Deeply-Recursive Convolutional Networks
(DRCN) [14], and Deep Recursive Residual Network (DRRN) [26] emerged,
building the neural network based on units or blocks that learn through residual
functions, which represent the difference between the original and processed image.
Residual networks can converge faster, requiring fewer epochs and providing a higher
Peak Signal-to-Noise Ratio (PSNR) [12] in training, which quantitatively measures
the quality of the image reconstruction.

Subsequently, some approaches employ a de-convolution layer at the end of the
network that directly maps the original low-resolution image to the high-resolution
image [6]. Some others approaches extract features from the low-resolution space
and maps them to the high-resolution space [25]. These scaling techniques have been
leveraged by several residual models, which use residual scaling methods to improve
the stability and performance of deep networks. Alternatively, some models utilize
a Residual Dense Block (RDB) as the central component in network construction,
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where each RDB consists of densely connected layers and local feature fusion with
local residual learning [33].

Recent advancements introduce the Generative Adversarial Networks (GAN) [9].
GAN models consist of a generator that produces SR images and a discriminator that
evaluates whether the generated image is real or artificial. A good approximation
of the high-resolution image is assumed if the discriminator cannot distinguish
between the generated image and the original image [25]. In addition, a new
function in GAN is used as a discriminator to enable the generator to retrieve
more detailed textures by learning to infer which image is more realistic [30].
Furthermore, a residual-in-residual (RIR) structure has been proposed to address
the low-frequency information removed through multiple hopping connections. This
structure incorporates a Channel Attention (CA) mechanism that adaptively rescales
channel characteristics by considering channel inter-dependencies [32].

In this paper we have divided SR-algorithms into several groups based on their
network architectures and characteristics within the context of super-resolution
techniques. The algorithms are categorized into four sets, each focusing on specific
aspects of network design and methodology.

3.1 Residual-based models

Residual models focus on learning the difference between the input and desired
output, simplifying the learning of identity mappings and aiding in the training
of deeper networks. A well-known example of this approach is ResNet, which
helps mitigate the vanishing gradient problem. Building on this, Very Deep Super-
Resolution (VDSR) networks [13] utilize deep structures with small filters to
efficiently capture contextual information across large image regions. By applying
residual learning and high learning rates, they optimize the network quickly, ensuring
training stability through gradient clipping. Expanding on these concepts, the Deep
Recursive Convolutional Network (DRCN) [14] introduces up to 16 recursive
layers, enhancing performance without increasing the number of parameters. This
is achieved by using recursive supervision and skipping connections, which make
training more manageable. Further advancing this idea, the Deep Recursive Residual
Network (DRRN) [26] proposes a deeper model with up to 52 convolutional
layers. By leveraging residual learning, it improves performance while using fewer
parameters, building on the success of earlier models.

3.2 Scaling methods

Scaling models aim to enhance the network’s capacity by increasing the number of
layers, channels (width), or the resolution of input images. This approach is designed
to boost the network’s performance by enabling it to capture more complex patterns.
Dong et al. further refined their SRCNN model for practical applications that require
real-time performance (24 fps), achieving better quality and a 40-fold increase
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in speed. Their proposed model, the Fast Super-Resolution Convolutional Neural
Network (FSRCNN) [6], introduced three key improvements: first, it incorporates
a de-convolution layer at the network’s end, directly mapping the low-resolution
image to its high-resolution counterpart; second, it reduces the input dimension by
reformulating the mapping layer; and third, it uses smaller filters but more mapping
layers, optimizing computational efficiency.

Building on this, the Efficient Sub-Pixel Convolutional Network (ESPCN) [25]
introduces another innovation by extracting feature maps in the low-resolution space,
eliminating the need to scale the input image to high resolution. This reduces the
computational load while maintaining performance. Furthermore, it incorporates a
sub-pixel convolutional layer that learns a set of filters to scale the final low-resolution
feature map to a high-resolution output.

3.3 Integrating Residual and Scaling Methods for Enhanced
Super-Resolution Performance

By combining scaling strategies with residual learning, models can achieve both high
performance and computational efficiency. Residual connections allow networks to
focus on learning high-frequency details, crucial for super-resolution, while scaling
strategies (such as depth, width, and resolution) enhance the network’s ability
to capture finer details, improving the quality of super-resolved images. Models
integrating residual learning with scaling methods represent a hybrid approach
that leverages the strengths of both techniques. The residual component enables
the network to capture fine details, while scaling methods optimize the network’s
capacity to enhance image resolution. Below are key models that integrate both
approaches.

The Enhanced Deep Super-Resolution (EDSR)[17] model improves upon
SRResNet by removing unnecessary modules to create a more compact and efficient
architecture. By using residual scaling techniques, EDSR stabilizes the deep model
and delivers superior performance, winning the NTIRE2017 SR Challenge[27]. The
Laplacian Pyramid Super-Resolution Network (LapSRN) [16] reconstructs high-
resolution images progressively through sub-band residuals. This model eliminates
the need for bicubic interpolation, reducing computational complexity while using
deep supervision and a robust loss function to ensure high-quality reconstruction.
SRDenseNet [28] introduces dense hopping connections, where feature maps from
each layer are propagated to all subsequent layers. This facilitates the combination
of low-level and high-level features, improving reconstruction performance and
mitigating the vanishing gradient problem in very deep networks. Additionally, de-
convolution layers accelerate the up-sampling process. The Residual Dense Network
(RDN) [33] addresses the challenge of inefficient use of hierarchical features in low-
resolution images, which can limit performance in deep CNN-based SR models.
RDN incorporates Residual Dense Blocks (RDBs) to efficiently fuse features and
retain crucial information, enabling the network to scale effectively and stabilize
during training.
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Lastly, the Residual Channel Attention Network (RCAN) [32] introduces a
Residual in Residual (RIR) structure that focuses the network on high-frequency
information by removing low-frequency data. With its Channel Attention (CA)
mechanism, RCAN adapts the network’s focus on relevant channel characteristics
by considering relationships across channels.

The Enhanced Deep Super-Resolution (EDSR) [17] residual network model was
designed with an improvement of the SRResNet model, achieving better results
by eliminating unnecessary modules while obtaining a more compact model. They
used residual scaling techniques to give stability to the deep model. This method
showed superior performance over state-of-the-art methods on benchmark datasets,
becoming the winner of the NTIRE2017 SR Challenge [27].

3.4 Generative Models for Super-Resolution Enhancement

Generative Adversarial Networks (GANs) have been a breakthrough in Single
Image Super-Resolution (SISR), starting with the SRGAN [25], which introduced
the concept of using a GAN for SR tasks. This model features a generator that
creates super-resolved images and a discriminator that distinguishes between real
and generated high-resolution images. If the discriminator cannot tell the difference,
the generated image is considered a successful approximation of the high-resolution
output. The generator in SRGAN is based on the SRResNet model, a residual network
comprising five blocks of two conventional layers (Conv-BN-ReLU).

Building on this, the SRFeat [22] model introduces a new generator with long-
range hop connections, enabling more efficient transfer of information across distant
layers. It also incorporates two types of discriminators: an image discriminator and
a feature discriminator, the latter focusing on preserving high-frequency structural
features while reducing noise artifacts, enhancing image quality. The ESRGAN [30]
model takes SRGAN a step further by significantly improving visual quality. It
introduces a generator based on a multi-block Residual in Residual Dense Block
(RRDB) architecture, eliminating Batch Normalization (BN) layers for better
performance. Additionally, ESRGAN employs a relativistic GAN discriminator,
which learns to evaluate the realism of generated images, pushing the generator
to recover finer textures and details. This progression demonstrates how each GAN-
based model builds on its predecessor, improving the quality of generated super-
resolved images by refining the generator and discriminator architectures, while
focusing on finer details and better texture representation.

3.5 Comparison of Super-Resolution Models selected from literature

his section provides an overview of several deep learning and generative model-based
Super-Resolution (SR) techniques. These models were adapted for CTA images,
implemented, evaluated, and analyzed, as they are typically used for biological
image processing. A summary of the evaluated models is presented in Table 1,
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where each model is categorized based on its architecture and methodology. This
classification offers a structured approach to understanding their strengths and
capabilities, particularly in addressing the challenges of enhancing vascular structure
visualization in CTA images.

Table 1 Comparison of SR Models evaluated for CTA images, based on their network architectures
and characteristics.

Model Convolutional Residual GAN
model-based model-based model-based

SRCNN915 [5] X
SRCNN955 [5] X
EDSR [17] X X
RCAN [32] X X
SRGAN [25] X X
ESRGAN [30] X X

4 Materials and Methods

4.1 Dataset

The data consisted of anonymized CTA medical images of lower extremities in
DICOM format [2]. CT imaging, using X-ray radiation, produces anatomical slices
for diagnostics [4]. Each image is made of voxels, with values reflecting tissue density
on the Hounsfield scale [4]. CTA is used to detect conditions like arterial aneurysms,
blockages, blood clots, and PAOD [8].

Fig. 2 Cell selection for training and validation. If 600 slices (on average) are selected in a
study and from each slice 24 block cells are used, we have about 14,400 64x64 pixel images for
training/validation the SR models.

The images obtained by CTA in this study are volumetric data of size 512×512
pixels per slice. Due to the large computational demands of deep learning networks,
64×64 blocks were used for training. The selected block is used as an output image
(target), while the input is a bicubic-downsampled version of the same block for
testing purpose.

4.2 Image selection

For this study, we selected CTA images of the lower extremities, manually removing
the initial and final slices to retain only the relevant images from the genitalia to the
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ankle. On average, each study/series included around 600 images, all of which were
anonymized. To optimize memory usage during SR model training, we divided each
512x512 pixel slice into smaller 64x64 pixel blocks, preventing memory overflow
and ensuring smooth execution. Since many of these blocks did not contain relevant
information, we focused only on the most informative cells, as shown in Figure 2.

4.3 Development Tools

Python was used as the programming language, along with various packages that
facilitate the implementation of artificial intelligence, including Pandas 1, Numpy 2,
TensorFlow 3, Keras 4, sci-kit-learn 5, and OpenCV-python 6. We tested the
algorithms using Jupyter Notebook 7. For handling DICOM images, we used the
Pydicom library 8. The 3-D modeling of the original studies and those obtained after
applying the SR method was performed with 3D-Slicer 9. This tool is an open-source
software designed for the visualization, processing, segmentation, registration, and
analysis of 3-D medical, biomedical, and other images and meshes.

4.4 Evaluation metrics

Any processing performed on an image can cause a significant loss of information
or quality. Several metrics allow to evaluate such loss. PSNR, related to Mean
Square Error (MSE), evaluates the quality of the image reconstruction by numerically
comparing the original image and the image generated by the reconstruction [24];
it gives a rough estimate of the human perception of the reconstruction quality.
Its measure is in decibels (dB), and its value tends to infinity, so the higher it is,
the better the quality of the generated image. On the other hand, a lower PSNR
value means a big numerical difference between images. SSIM is a model based on
the perception of the human visual system. It measures the similarity between the
original and reconstructed image by considering structural information, luminance,
and contrast [12]. The SSIM index is a decimal value between -1 and 1, with 0
indicating no structural similarity, 1 indicating a perfectly similar structure, which is
achieved in the case of two identical images, and -1 indicate a perfect anti-correlation,
meaning the images are structurally opposite [20].

1 https://pandas.pydata.org/
2 https://numpy.org/
3 https://www.tensorflow.org/
4 https://keras.io/
5 https://scikit-learn.org/stable/
6 https://opencv.org/
7 https://jupyter.org/
8 https://pydicom.github.io/
9 https://www.slicer.org/
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4.5 Super-resolution CNN models applied to CTA images

The success of deep learning in SR has led to the development of numerous
methods. In this paper, we compared and adapted various SRCNN models for lower
extremity CTA images, using the same loss functions and optimizer as the original
authors. We also computed metrics like maximum PSNR [12] and SSIM [20] to
quantitatively evaluate the results. Notably, the final convolution layer, responsible
for reconstructing the output image, generates a one-dimensional feature map due
to the monochrome (single-channel) nature of the CTA images. Below, we describe
the architecture of each SR model implemented and evaluated.

Super-resolution convolutional neural network (SRCNN) In 2014, Dong et al.
[5] introduce this method. They use a CNN that takes the low-resolution image as
input and generates the high-resolution image. The architecture is shown in Fig. 3,
it was adapted to CTA images.

Fig. 3 Implementation scheme of the SRCNN 9-1-5 model. Each convolution is defined by the
number of features, the size of the convolution matrix (kernel), and the convolution step (stride).

Initially, the low-resolution image is pre-processed by enlarging it to match the
high-resolution image using bi-cubic interpolation. The end-to-end learning consists
of three convolutional steps: first, extracting patches from the low-resolution image
as high-dimensional vectors; second, performing nonlinear mapping to create feature
maps; and third, reconstructing the high-resolution image by aggregating these patch
representations. And in 2015, Dong. et. al published version 3 of their paper [5],
where they generalize the second step of their method by applying larger filters,
thereby achieving better learning results, and designed the SRCNN 9-5-5 model
architecture (see Fig. 4).

SRCNN model numbers such as 9-1-5 and 9-5-5 refer to the filter sizes and
number of filters used in each convolutional layer. SRCNN 9-1-5 uses a 9x9 filter
size in the first layer, a 1x1 filter size in the second layer and a 5x5 filter size in the
third layer. On the other hand, SRCNN 9-5-5 uses a filter size of 9x9 in the first layer,
a filter size of 5x5 in the second layer and a filter size of 5x5 in the third layer. In
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Fig. 4 SRCNN 9-5-5 model architecture.

Figures 3 and 4, codes such as f64k9s1, f64k1s1 describe the configuration of the
convolutional layers in terms of filters, core size and stride, for example:

• f64k9s1: indicates the convolution layer is composed of 64 filters (f64) with a
kernel size of 9x9 (k9), and stride of 1 (s1).

• f64k1s1: indicates the convolution layer is composed of 64 filters (f64) with a
kernel size of 1x1 (k1), and stride of 1 (s1).

Fig. 5 EDSR model architecture

Enhanced Deep Residual Networks for Single Image Super-resolution
(EDSR) Based on SRResNet [25], it consists of a series of ResBlocks followed by
an image scaling block, as shown in Fig. 5. Unlike SRResNet, EDSR removes Batch
Normalization (BN) layers, improving performance without compromising quality.
This allows for deeper networks that outperform conventional Residual Networks
(ResNet)[11]. However, training became unstable when feature maps exceeded a
threshold, which was addressed by applying a residual scale of 0.1 in each block
(shown as ’Mult 0.1’ in Fig. 5). The final block scales the image by ×2, with a second
block used for ×4 scaling.

Residual Channel Attention Networks (RCAN) [32] It consists of four main
components: shallow feature extraction, residual deep feature extraction via Residual-
in-Residual (RIR) modules, a scaling module, and a reconstruction module. The
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shallow feature extraction uses a single convolutional layer, while the RIR module,
composed of multiple Residual Groups (RGs) with Residual Channel Attention
Blocks (RCABs), facilitates deep feature extraction. The scaling module, based on
ESPCNN [25], improves image resolution. Long hop connections enable the network
to focus on key low-resolution features. Additionally, the Channel Attention (CA)
mechanism helps the network prioritize informative features by considering channel
inter-dependencies. This architecture supports the training of very deep networks,
with over 400 layers.

Fig. 6 RCAN model architecture

Super-resolution using GAN (SRGAN) This model aims to improve perceptual
quality over traditional PSNR-based methods. While PSNR decreases, the overall
structural quality improves, and the goal is to generate SR images with high-quality
structures for reliable 3-D reconstruction. In this approach, the focus is on training
the generator without adversarial training. The SRGAN [25] generator, known as
SRResNet, is a deep residual network that diverges from MSE as the sole optimization
objective. The architecture (see Fig. 7) includes 16 residual blocks, each formed
by two convolutional layers (3×3) with 64 feature maps, batch normalization, and
ParametricReLU (PReLU) activation. The resolution is increased through ×2 scaling
blocks using 3×3 convolutions with 256 feature maps, followed by pixel shuffling and
PreLU activation. The final output is produced by applying a 3×3 convolution with
a single feature map. The ’tanh’ activation function, which captures both positive
and negative features, yields the best results in super-resolution tasks by preserving
high-frequency details.

Enhanced Super-Resolution GAN (ESRGAN): [30] It improves image quality
over SRGAN by making two key modifications to the generator: removing Batch
Normalization (BN) layers and introducing a new basic block called the Residual
in Residual Dense Block (RRDB). The RRDB combines a multilevel residual
network with dense connections, as shown in Fig. 8. Removing BN layers enhances
performance, improves network adaptability, and reduces computational complexity
and memory usage, while also minimizing the risk of artifacts in deep networks. The
RRDB structure is more complex than the original SRGAN residual block, featuring
a residual-in-residual design that performs residual learning at multiple levels using
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Fig. 7 SRGAN model architecture

Fig. 8 ESRGAN model architecture.

dense blocks. Additionally, residual scaling, by multiplying by a constant 𝛽 (between
0 and 1), is applied to prevent instability and improve training stability.

5 Results

In order to perform comparative training between the different models selected in this
work, the same set of images was used for all of them. Two CTA studies were used,
the first study had 596 slices, and the second had 580 slices. The image selection was
performed as specified in section 4.2. Twenty percent (20%) of the slices were used
for validation, and the rest were used for training. Each slice provides a batch of 8
images of 64×64 pixels. Finally, using 7,528 images for training and 1,880 images
for validation. All models were subjected to a 10-epoch training using the parameters
defined by their authors in the published papers.

In the GAN networks only the generator network is trained, since a GAN training
with discriminator brings visual realism to the images but introduces artifacts in the
image [25, 30], especially in tiny structures, which could affect its use for medical
diagnosis [31]. An ×8-scale training was performed for the models (SRCNN 9-5-5)
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that our available resources could support. However, the quantitative and qualitative
results were so poor that they were not worth presenting.

The bi-cubic interpolation [10] is not a neural network model but a mathematical
model used to perform image scaling, and we used it as a reference. Bi-cubic
interpolation uses a weighted average of the 16 nearest pixels (4x4 grid) around
the target pixel. Table 2 displays the PSNR and SSIM values for scales x2 and x4,
from every method studied. The observed trend reveals a decrease in visual quality
starting from the ×4 scale, every model showed better results on scale x2.

The SRCNN model, characterized by its simplicity with just three convolutions,
demonstrates notable performance compared to the other implemented models for
this image type. The SRCNN 9-5-5 model, which consists of a 5×5 convolution
matrix in the central convolution, performs lighter better than the model SRCNN
9-1-5 (see Table 2). However, it is not possible to say which of them perform better.
Although the EDSR model was developed as an enhancement of the SRRestNet
model (SRGAN generator), it has exhibited inferior results, particularly at the
×4 scale, where the difference is significantly noticeable both in qualitative and
quantitative terms. Please refer to Table 2 for a detailed presentation of the results.

The authors of RCAN defined in their paper a model configuration of 10 RG with
20 RCAB each. However, after testing several configurations in this study, better
results have been obtained with 2 RGs and 20 RCABs each. These results are shown
in Table 2.

On the other hand, the SRGAN model defines a generator (SRResNet) that has
been taken as a reference in the literature due to its quality, especially at scales
×4 or larger. This model with momentum equal to 0.5 in the Batch-Normalization,
as used by the creators, the PSNR and SSIM indicated high-quality reconstruction
with minimal loss of detail and strong structural similarity to the original image, but
generated large artifacts in most of the images for x4 scale and degenerated their 3-D
representation. After several tests, we realized that reducing the momentum to 0.2
prevented artifacts at x4 scale and produced better results, though still not as good
as the RCAN model. The results obtained in the training of this model reflected in
Table 2 showed that on CTA images with the scale x4 it performs better than the
scale x2 compared with RCAN model, as we can see in Table 2, but there was not
so much difference. However SRGAN is slightly better in the scale x4 than RCAN.
SRGAN performed better than the others models compared, including the RCAN, at
the scale x4 (see Table 2).

The ESRGAN model is considered by the literature as an improvement of its
predecessor SRGAN, using a full GAN (generator-discriminator) training. In this
study only the generator of the models is used for reasons already defined, with 64
features and 23 RRDB blocks. In this case we have worse results than its predecessor,
as can be seen in Table 2.
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Table 2 Summary of the results obtained by the applied methods, with metrics at x2 and x4 scales,
tested on the same arterial area, in three different patients

Patient 2 Patient 3 Patient 4
Original ROI

x2 scale x4 scale x2 scale x4 scale x2 scale x4 scale
BICUBIC

PSNR 35.93
SSIM 0.9796

PSNR 27.03
SSIM 0.8670

PSNR 35.39
SSIM 0.9746

PSNR 26.37
SSIM 0.8518

PSNR 40.16
SSIM 0.9819

PSNR 32.95
SSIM 0.9415

SRCNN 9-1-5

PSNR 36.66
SSIM 0.9814

PSNR 28.48
SSIM 0.9305

PSNR 36.20
SSIM 0.9753

PSNR 27.49
SSIM 0.8735

PSNR 40.91
SSIM 0.9813

PSNR 34.53
SSIM 0.9433

SRCNN 9-5-5

PSNR 35.71
SSIM 0.9786

PSNR 28.23
SSIM 0.8981

PSNR 35.69
SSIM 0.9746

PSNR 27.84
SSIM 0.8831

PSNR 39.48
SSIM 0.9802

PSNR 33.58
SSIM 0.9422

EDSR

PSNR 37.56
SSIM 0.9868

PSNR 25.70
SSIM 0.8472

PSNR 34.79
SSIM 0.9813

PSNR 24.29
SSIM 0.8362

PSNR 38.22
SSIM 0.9850

PSNR 29.84
SSIM 0.9323

RCAN

PSNR 41.82
SSIM 0.9903

PSNR 31.55
SSIM 0.9422

PSNR 41.16
SSIM 0.9845

PSNR 29.09
SSIM 0.9107

PSNR 46.21
SSIM 0.9865

PSNR 36.32
SSIM 0.9527

SRGAN

PSNR 40.85
SSIM 0.9897

PSNR 31.97
SSIM 0.9500

PSNR 40.50
SSIM 0.9846

PSNR 30.18
SSIM 0.9196

PSNR 44.60
SSIM 0.9860

PSNR 36.36
SSIM 0.9537

ESRGAN

PSNR 35.65
SSIM 0.9789

PSNR 25.45
SSIM 0.8172

PSNR 33.03
SSIM 0.9730

PSNR 25.06
SSIM 0.8166

PSNR 36.65
SSIM 0.9804

PSNR 28.26
SSIM 0.9166
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6 Discussion

The compared models allow obtaining better results at PSNR and SSIM level than
the mathematical scaling models such as the bi-cubic one. We can observe in Table 2
that, for this type of images with a single channel, at ×2 scale even better results are
obtained than with color images, if we consider the results obtained by the authors
of the models reflected in the literature [5, 17, 25, 30, 32]. Table 2 shows the results
for scale ×2, and x4. The best result for scale x2 was achieved by RCAN model,
while the best result for scale x4 were obtained for the SRGAN model. Using the
RCAN and SRGAN models, the best SR models compared for ×2 and ×4 scales,
respectively, we can test the effect of SR on CTA images of the lower extremities. If
we create a 3-D representation of the obtained images, we can observe how the small
arteries become more prominent due to the effect of the super-resolution, as shown
in Figures 9, 10, and 11. Images are frontal visualization of a 3-D rendering images
generated using 3D-Slicer [7], an open source rendering and visualization tools.

Fig. 9 3-D visualization of the effect of SR (Patient 5). The first row shows the original images,
second row shows the best result using the RCAN model at scale x2, and the third row shows the
best result using the SRGAN model at scale x4.

7 Conclusion and Future Work

In this study, we addressed the limitations of standard CTA in capturing the detailed
morphology of small arteries, particularly in the lower extremities. To overcome
this challenge, we applied advanced super-resolution (SR) techniques to enhance the
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Fig. 10 3-D visualization of the SR effect (Patient 6), also with best results with RCAN and SRGAN
models (x2 ans x4 scale respectively).

Fig. 11 3-D visualization of the SR effect (Patient 7), also with best results with RCAN and SRGAN
models (x2 ans x4 scale respectively).

three-dimensional (3-D) reconstruction and visualization of lower extremity arteries
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using standard CTA images. We evaluated various single-image super-resolution
(SISR) models tailored for CTA images, including SRCNN, EDSR, RCAN, SRGAN,
and ESRGAN. Among them, the RCAN (Residual Channel Attention Networks)
and SRGAN (Super-Resolution Generative Adversarial Network) models stood out
as the most effective. RCAN excelled at a two-times (x2) scale, while SRGAN
performed exceptionally well at a four-times (x4) scale. These models have different
objectives, with RCAN focusing on improving high-resolution image quality and
SRGAN specialized in up-scaling low-resolution images.

Our findings demonstrate that these SR techniques significantly improved image
quality and enabled the visualization of previously indistinct or imperceptible
arteries, which holds promise for conditions like peripheral arterial occlusive disease
(PAOD). This advancement underscores the role of intelligent systems in enhancing
medical diagnostics and decision support. This chapter exemplifies how cutting-edge
technologies in artificial intelligence and machine learning can transform healthcare
by providing clinicians with powerful tools to analyze complex information and
make more informed decisions, showcasing intelligent systems that support decision-
making across various fields.

Future research should explore the application of SR methods to enhance inter-
slice quality in CTA images, as this could provide additional diagnostic insights into
arterial diseases. Despite challenges such as computational cost and time constraints,
our study highlights the potential of SR techniques as a valuable tool for diagnosing
PAOD. By integrating these advanced techniques into clinical practice, we can
improve diagnostic capabilities in vascular imaging, ultimately leading to better
decision-making and patient outcomes.
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