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Chapter 1
Decision Support System in Smart Healthcare:
System for diagnosis of skin cancer using deep
learning

Veronica Angelica Villalobos Romo[0000−0002−8021−5145] and
Soledad Vianey Torres Arguelles[0000−0003−0978−3796] and
Claudia Georgina Nava Dino[0000−0002−8714−3690] and
Jose Manuel Mejia Muñoz[0000−0002−5832−6623] and
Edgar Daniel Gomez Garcia[𝑁𝑂𝑇𝐼𝐸𝑁𝐸𝑂𝑅𝐶𝐼𝐷 ] and
Jose David Diaz Roman[0000−0002−8246−6562]

Abstract This chapter presents a mobile application as a decision support system
for detecting six types of pigmented skin lesions using deep learning. Melanoma,
the most aggressive of these conditions, represents only 1% of skin cancer cases
but causes most deaths. Early detection is crucial for a higher chance of cure. In
low-income countries, insufficient equipment and specialists make early diagnosis
challenging. This mobile application aims to address the problem by allowing non-
specialists to make a probable early detection of skin cancer and thus make the
decision to consult a medical specialist. The decision support system uses convo-
lutional neural networks with dense layers and applies the SMOTE [1] method to
balance the dataset. Evaluations using the HAM10000 and PAD-UFES databases
show a classification accuracy of over 80% across six skin cancer classes, with an
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improvement of up to 9% when SMOTE is applied. The lightweight application
(284 MB) processes images directly from the smartphone camera or stored images,
achieving a latency of 9.33 seconds per response. This allows the processing of six
patients per minute and 360 patients per hour. The proposed system offers signifi-
cant potential to improve early diagnosis and treatment of skin cancer, particularly
in resource-limited settings.

1.1 Introduction

Skin cancer has become a global public health issue, with its incidence increasing
over the past decades [2, 3]. The morphological characteristics of skin lesions are
crucial factors in the diagnosis and early detection of cancer [4]. The skin, the
largest organ of the human body, covers between 1.5 and 2 square meters and weighs
approximately 4.2 kg [3]. The term ”skin cancer” encompasses several neoplasms
that share malignant behavior; however, individually they show very diverse degrees
of local aggressiveness, tendency to metastasize, and mortality. These differences in
malignancy are one of the most distinctive characteristics of skin cancer. The least
malignant skin cancer, basal cell carcinoma, develops in the skin, as does one of
the most aggressive neoplasms, melanoma. There can be superficial, slow-growing
carcinomas to highly destructive invasive tumors capable of metastasizing [2, 3, 4].

The American Cancer Society estimates that approximately 100,350 new cases
of melanoma will be diagnosed in the U.S. (about 60,190 men and 40,160 women).
Melanoma is considered rare in Mexico, with an incidence of less than one case
per 100,000 inhabitants, representing around 2,700 cases annually [5]. However,
identifying melanoma is crucial as it has been detected that those susceptible to
skin cancer in Mexico include farmers, sailors, street vendors, and individuals with
genetic predispositions. Most of these people can be considered low-income, leading
to a lower likelihood of early diagnosis and timely treatment [5, 6, 7]. In developing
countries like Mexico and Brazil, particularly in peripheral areas, there is a lack of
dermatologists and dermatoscopy equipment. Mobile devices can be a useful tool in
this situation, given the high number of mobile subscriptions; according to Kassianos
et al. [8], there were nearly eight billion subscriptions in 2019.

Numerous works have been proposed for melanoma detection using convolu-
tional neural networks (CNN) on dermoscopic images. However, data imbalance in
the available datasets has been a recurring problem, as the classification categories
are not equally represented [9, 10]. In the medical field, a significant numerical
imbalance in the number of samples of different lesion classes is common [11, 12].
In this context, machine learning has emerged as a powerful tool for medical image
classification and disease detection [13, 14, 15, 16].

For example, Dai X. et al. [17] developed a classifier using the HAM10000
database [18], achieving an accuracy of 70%. On the other hand, Castro P. et al.
[19] employed the MUPEB balancing technique (Extra-Polarization and Differential

Writing suggestion: "The lightweight application (284 MB) processes images directly from the smartphone camera or stored images, achieving a latency of 9.33 seconds per response, allowing the processing of six patients per minute."
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Evolution Balancing) with the PAD-UFES database [20], achieving an accuracy of
83%. This result represented a 6% and 16% increase in accuracy and sensitivity,
respectively, compared to previous works.

Data imbalance remains a significant challenge in developing effective classifi-
cation methods. In 2019, R. Gao et al. evaluated the use of the Synthetic Minority
Over-sampling Technique (SMOTE) in classifying facial skin pigmentation disor-
ders, confirming a 7% improvement in accuracy for the two classes with the fewest
data points [21, 1].

In [22], the SMOTE technique was implemented on imbalanced data from the
HAM10000 skin cancer image repositories. Subsequently, a convolutional neural
network-based architecture was used to classify seven classes of skin lesions. This
approach has the potential to significantly improve accuracy and sensitivity in de-
tecting melanoma and other skin lesions, thereby contributing to earlier and more
effective skin cancer diagnosis [22]. It is estimated that in 2022, there were 335,000
new cases of melanoma worldwide, and around 60,000 people died from the disease
[23].

1.1.1 Importance of Artificial Intelligence and Data Analytics in
Medical Imaging

In the health sector, artificial intelligence, data analytics, and image processing
are fundamental for decision-making, diagnosing, and treating various diseases,
representing the most innovative advancements. Through data analysis and advanced
technology, it is now possible to detect diseases, initiate immediate treatment, and
increase the chances of success [24]. Modern algorithms assist doctors in utilizing
everything from MRI images to laboratory test results to identify patterns and signals
that may indicate the presence of a disease. In this way, data analytics facilitates the
analysis of large volumes of medical data to improve patient care and medical
research [24, 25, 26]. Medical image processing and data analytics enable healthcare
professionals to make more precise and personalized diagnoses. According to a
study by Saba et al. (2019), the use of deep learning algorithms in medical imaging
has significantly improved the ability to detect diseases such as breast cancer and
melanoma [25]. Therefore, data analytics helps manage large amounts of data into
clear and useful information. This allows for more informed decision-making with
less risk, as they are based on concrete data. Additionally, leveraging the potential
massive amounts of data in the medical field ensures that care is appropriate for
the patient and delivered at the right time, being potentially beneficial for everyone
involved in the healthcare sector [27]. Artificial intelligence and data analysis are
related, although they have different goals and objectives. Artificial intelligence
aims to create autonomous and intelligent systems, while data analysis focuses
on extracting valuable information from data to support decision-making. Both are

lack of connection of this argument in this paragraph. I recommend moving this sentence to the paragraphs at the beginning of this section

Suggestion: Modern algorithms assist doctors, using everything from magnetic resonance imaging and signal acquisition equipment to laboratory test results, identify patterns and signals that may indicate the presence of a disease.

Suggestion: Therefore, data analytics helps to manage large amounts of data to convert it into clear and useful information.
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important in the information age and are constantly evolving, providing opportunities
for development and research in various areas such as the health sector [27].

1.1.2 Skin Cancer and Its Diagnosis

The detection and diagnosis of skin cancer have traditionally been carried out through
visual inspection combined with a systematic evaluation or examination process
to identify the disease. However, this depends on the dermatologist’s experience,
making the processes lengthy, subjective, and possibly prone to errors [28]. This is
due to the complex nature of skin lesions. Additionally, diagnosing skin cancer is
not just about identifying melanoma or non-melanoma. It also includes multiple skin
lesions, which complicates specialized analyses, such as distinguishing a melanocytic
nevus from a melanoma or from basal cell carcinoma and squamous cell carcinoma,
among other lesions [7]. Consequently, Computer-Aided Diagnosis (CAD) systems
become necessary for the preliminary diagnosis of different lesions [29].

The use of deep learning technology with Convolutional Neural Networks (CNN)
helps specialists identify and diagnose skin lesions, such as melanoma, more accu-
rately and efficiently, leading to new research and developments to improve the
performance of CAD in addressing many other complex clinical problems [29].
Using CAD with CNN provides a powerful tool that supports healthcare profession-
als in identifying skin lesions, improving diagnostic accuracy, and enabling earlier
and more effective interventions. By combining medical expertise with advanced
technology, more precise and efficient patient care is achieved [30].

Advances in smartphone cameras have enabled their potential use for the early
detection of skin cancer. Smartphones can now recognize characteristics associated
with skin cancer. To achieve this, Convolutional Neural Networks (CNNs) are com-
monly used for the detection and classification of diseases [31]. However, only a few
deep learning models can be utilized to create a mobile application, as they require
high computational power and large memory, which is challenging to implement on
smartphones [32]. Nonetheless, various studies have developed mobile applications
on smartphones with favorable results [30, 31, 32, 33].

Therefore, the development of a mobile application for skin cancer detection is
essential, as it offers an accessible and portable tool for users to identify skin problems
and seek timely medical attention. Additionally, the presence of a precise and easy-to-
use diagnostic tool on a common device such as smartphones can significantly reduce
the burden on healthcare systems, allowing professionals to provide appropriate
treatment for the overall well-being of patients.

CNN acronym already defined.
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1.2 Methodology

This section describes the methodology used to create the application that detects
skin cancer using images, First, image repositories with clinically diagnosed and
classified cases by healthcare professionals were sought; then, the data were bal-
anced with the SMOTE method, followed by the design of a dense network fully
connected with convolutional adjustable base, where it was evaluated with convo-
lutional architectures where two were of low weight and the remaining two were of
high weight, these architectures were taken from the Keras library and a fine tuning
was applied; then an application based on java language was designed to run on
an Android device, and finally the system was simulated with test users to finally
evaluate the effectiveness of the application. Figure 1.1 shows a diagram describing
the process carried out in this methodology.

Fig. 1.1 Methodology process

Each section proposed in the methodology is detailed below.

1.2.1 Compilation of Databases

Training artificial neural networks to perform classification requires pre-labeled data,
meaning each image must have a title or an attached file indicating the class or object
contained in the image. For this reason, the HAM10000 database [18] was optimal
for this project. This repository contains images of various types of skin diseases
and syndromes, previously classified by healthcare professionals.
It consists of 10,015 dermatoscopic images with a uniform size of 1024x1024 in jpg
format, which are publicly available. Table 1.1 shows the number of images for each
of the classes included in the database.

On the other hand, images from the PAD-UFES repository [20] were also used,
which contains clinical images of skin lesions properly labeled. The images were
acquired with mobile devices and vary in size from 256x256 to 1024x1024 in PNG
format. This dataset is an effort to assist researchers in developing low-budget tools,
particularly to aid in skin cancer detection. Table 1.2 shows the number of images
per class in the PAD-UFES database.

For this work, the vascular lesion class was first eliminated from the HAM10000
database because this classification is a skin lesion and not a pathology. Subsequently,
both databases were concatenated in such a way that when adding all the images
from PADUFES to HAM1000, 1165 images of melanoma, 1334 of benign keratosis,

add a period. 

Suggestion: Then, the data were balanced using the SMOTE method, followed by the design of a fully connected dense network with a convolutional adjustable base. This network was evaluated using convolutional architectures, two of which were low-weight and the remaining two high-weight. These architectures were sourced from the Keras library, and fine-tuning was applied.

Suggestion: ... an associated label indicating the class or object it contains.

Suggestion: For this work, the vascular lesion class was first eliminated from the HAM10000 database because these lesions are considered skin anomalies rather than pathologies.



6 Authors Suppressed Due to Excessive Length

Table 1.1 Distribution by class in HAM10000 Database.

Injury Quantity

Melanocytic nevi (nv) 6705
Melanoma (mel) 1113
Benign keratosis (bkl) 1099
Basal cell carcinoma (bcc) 514
Actinic Keratoses (akiec) 327
Dermatofibroma (df) 142
Vascular skin lesions (vasc) 115
𝑎 HAM 10000

Table 1.2 Distribution by class in PAD-UFES Database.

Injury Quantity

Melanocytic nevi (nv) 244
Melanoma (mel) 52
Benign keratosis (bkl) 235
Basal cell carcinoma (bcc) 845
Actinic Keratoses (akiec) 730
Dermatofibroma (df) 192
𝑎 PAD-UFES

1359 of basal carcinoma and 1057 of actinic keratosis were obtained; Since a similar
number of images per class is sought, it was decided to use the 244 images of moles
from the PADUFES and add them with a random sampling of 956 images from the
HAM10000 to result in a final number of 1200 images of moles and thus have a
balanced distribution among the above classes of lesions. As for the dermatofibroma
class the sum of images from both databases resulted in 307 images. A random
undersampling of the nv class was performed. Table 1.3 shows the distribution of
images per class after combining both the HAM10000 and PAD-UFES databases.

Table 1.3 Distribution by Class When Combining Both Databases.

Injury Quantity

Melanocytic nevi (nv) 1200
Melanoma (mel) 1165
Benign keratosis (bkl) 1334
Basal cell carcinoma (bcc) 1359
Actinic Keratoses (akiec) 1057
Dermatofibroma (df) 307

Suggestion: 

 Sugestion for clarity: ... a random undersampling of the nv class was performed. it was decided to use the 244 images of moles
from the PADUFES and add them with a random sampling of 956 images from the HAM10000 to result in a final number of 1200 images of moles and thus have a balanced distribution among the above classes of lesions. As for the dermatofibroma class the sum of images from both databases resulted in 307 images. 
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1.2.2 Balancing with SMOTE

The SMOTE data balancing technique was used only on the dermatofibroma class,
because it was the class with the smallest number of images. For this purpose,
first the images of two classes were separated in different folders, where in one of
them there were the images of the minority class that needed to be balanced, i.e.
”squamous cancer” and in the other one there was a reference class with the number
of images to be obtained at the end; the benign keratosis class was used for this
purpose. Subsequently, the images of both classes were resized to a size of 256x256
pixels to have a standard measurement. This was done because both databases handle
different sizes.
The processing of the data to perform the balancing by SMOTE [34] consisted
of the following: the first step is to parameterize the values of each RGB (Red,
Green and Blue) combination of the pixels of each image to bring these values to a
two-dimensional plane, where each point in this plane represents an image. Next, a
random point from the minority class and a random point from the reference class
are selected and a new point is generated at half the distance between these two
points. This process was repeated until the same amount of data (images) from the
minority class was obtained with respect to the reference class. Figure 1.2 shows
examples of the results of the false images generated with SMOTE.

Fig. 1.2 Fake images generated with SMOTE of the dermatofibroma class

A total of 804 dermatofibroma images were generated and added to the total
image set, resulting in the distribution shown in Figure 1.3.

The images were separated in a stratified way, where 20% of all images (not
including the images artificially generated with SMOTE) were reserved from the
beginning to test the performance of the model. To the remaining 80%, the artificial
images were added, and from this total 80% were separated for network training and
20% for a validation set to be used during training.

Suggestion for clarity: Subsequently, the images from both classes were resized to 256x256 pixels to standardize their dimensions, as the two databases contain images of different sizes.

Suggestion: The images were separated in a stratified manner, reserving 20% for the test set, 64% for the training set, and 16% for the validation set used at the end of each epoch during training. None of the images artificially generated by SMOTE were added to the test set.
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Fig. 1.3 Histogram of distribution by class after SMOTE

1.2.3 Convolutional neural network design

Four convolutional neural network architectures were evaluated: Xception [35],
Resnet152V2 [36], EfficientnetV2 [37] and MobilenetV2 [38]. Each of these was
loaded from the Keras library with the weights predefined by imagenet [39], subse-
quently the last default classification layer was removed and the option to train the
weights of the convolutional layers was enabled.
To perform the training, a ”GlobalAveragePooling” layer was added to reduce the
convolution output and at the same time generate an output vector with the features
of interest. After this layer, a dense layer of six neurons with SoftMax activation
function was added to classify among the 6 types of lesions of the study.

Fig. 1.4 Architecture for
evaluating the design of
convolutional networks

Suggestion: Each of these networks was loaded from the Keras library, using their pre-trained versions with weights predefined by the ImageNet challenge.

Suggestion: To adapt each network to our classification task, a 'GlobalAveragePooling' layer was added, followed by a dense layer with six neurons and a SoftMax activation function to classify the six types of lesions in the study.

Pre-trained base network without top layer.

GlobalAveragePooling Layer

Dense Layer with six neurons and softmax activation function
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The architecture described in Figure 1.4 was trained with batch sizes of 64 images
for 40 epochs at a learning rate of 0.001 with an Adam optimizer and a categorical
cross-entropy loss function. In addition, a learning rate step-down function was
added to stop learning and a function to stop training in case performance did not
improve for 5 epochs.

After training the 4 architectures described above and evaluating their perfor-
mance using the validation set, the EfficietnetV2 convolutional neural network ar-
chitecture was chosen as it obtained the best performance at this stage. Once the
layers were trained under the scheme described above, the classification layer was
eliminated and dense layers were added to reduce the output features, these layers
were sequentially counted with 1280, 1280, 640, 320, 160 neurons, with GeLU ac-
tivation function; it is worth mentioning that at the end of each of these layers a
DropOut layer of 0.6 was added to avoid overtraining. Finally, at the output of these
dense layers, an output dense layer of 6 neurons with Softmax activation function
was added again to perform the classification again. Figure 1.5 shows the architecture
described above.

Fig. 1.5 Network architecture for sorting (each dense layer upstream of the output has DropOut of
0.6)

1.2.4 Application design

For the design of the application, Android Studio [41] was used, which, in order
to interpret keras/tensorflow models, requires them to be in tensorflowlite (tflite)
format [42]. This format is lightweight, encrypted in folders and designed to work
in applications with low performance equipment such as a cell phone, tablet or

Suggestion: The architecture described in Figure 1.4 was trained with batch sizes of 64 images for 40 epochs at a learning rate of 0.001, using an Adam optimizer and a categorical cross-entropy loss function. Additionally, a learning rate step-down function was added, along with an early stopping function to halt training if performance did not improve for 5 epochs.

Suggestion: After training the four architectures described above and evaluating their performance using the validation set, the EfficientNetV2 convolutional neural network architecture was chosen for its superior performance at this stage. Once the layers were trained as described, the classification layer was removed, and dense layers were added to reduce the output features. These layers sequentially contained 1280, 1280, 640, 320, and 160 neurons, each with a GeLU activation function. S DropOut layer with a rate of 0.6 was added after each dense layer to prevent overfitting. Finally, a dense output layer with six neurons and a Softmax activation function was added to perform the classification. Figure 1.5 illustrates the described architecture.

Dense layer, 
Size: xxx, 
GeLu function
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microcomputer. Then, the following lines of code were applied to make the change
to the tensorflowlite format:

#Install dependency

!pip install tflite-model-maker

import tensorflow as tf

# load the model developed above

model= tf.keras.models.load_model (’path’)

# define model specifications required for android #studio

converter=tf.lite.TFLiteConverter.from_keras_model (model)

converter.target_spec.supported_ops = [

tf.lite.OpsSet.TFLITE_BUILTINS,

tf.lite.OpsSet.SELECT_TF_OPS ]

# apply the conversion

tflite_model = converter.convert()

open("converted_model.tflite", "wb").write(tflite_model)

In the previously described program, it is important to highlight that the function
”tf.lite.OpsSet.TFLITE BUILTINS” and ”tf.lite.OpsSet.SELECT TF OPS” allows
to perform native operations of the tensorflow library, and although it adds slightly
weight, it is necessary to run efficiently in the application developed in Android
Studio.
The original weight of the model has a .h5 format (hierarchical data format), which
contains multidimensional arrays of scientific data and had a final weight in memory
of 284 MB; transforming the model to tensorflowlite format reduced the weight of
this to 110.5 MB, which gave the opportunity to add more dense layers and con-
volution filters to the model without exceeding the 200MB limitation requested by
Android studio, however no model showed improvement, so it was determined to
keep the model already created for the application.
Once the interface was designed, the dependencies for the Android device and li-
braries required for the functionality of the system were imported and the application
was installed on the mobile device. The application process is described below:
First , the application must be installed on the device, this can be done directly
through Android Studio with the help of a USB cable. Once the install option is
selected, the mobile device will display the message shown in Figure 1.6, asking for
permission to install the software on the device.

Next, the installed application will open and the menu shown in Figure 1.7 will
be displayed. The user will be presented with two options in the form of buttons to
analyze an image: the first option is to acquire an image using the device’s camera,
while the second will allow the user to browse its image libraries to select an image
if it is preloaded.

Suggestion: The original model weight file is in .h5 format (Hierarchical Data Format), which contains multidimensional arrays of scientific data, and has a final memory size of 284 MB.

Suggestion: .. its memory ...
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Fig. 1.6 Installation process

Fig. 1.7 Application menu and image selection

1.2.5 Simulation of the system

Once the image to be analyzed has been selected, a display of the selected image
will be shown on the main screen and the classification given by the model will be
shown below it, together with the probability of this classification with respect to the
rest of the 6 classes that can be evaluated. The display of results in the application
is shown below in Figure 1.8. It should be noted that in this figure a real evaluation
was performed with a test subject who is sure to have had this mark since birth, so
it is indeed a mole.

Edit the language of the figures or you must indicate that 
the application was made in Spanish language

Suggestion: Once the image to be analyzed is selected, it will be displayed on the main screen, with the classification result given by the model shown below it.

Suggestion: The results visualization in the application is shown below in Figure 1.8.

Suggestion: 
It should be noted that the test shown in this figure was a real evaluation with a test subject, who had the mark observed in the image since birth, so it was indeed a mole.
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Fig. 1.8 Display of results

1.3 Results

Two experiments were carried out, the first one training the networks with the original
images and later with the set that had the images added with the SMOTE balancing
of the dermatofibroma class. The training was performed with 100 epochs using a
function that decreases the learning rate gradually and another function that stops
the training at the moment when the loss metric monitored in the validation set
stops converging, this to avoid overfitting to the training data. The results during the
training process are shown in Figure 1.9 and 1.10.

Fig. 1.9 Accuracy results without SMOTE (left), with SMOTE (right)

Subsequently, an evaluation was carried out with the final model using the data
initially reserved for testing, which did not contain artificial images. To perform
this evaluation, a confusion matrix was constructed, the result of which is shown in
Figure 1.11.

To analyze the performance of accuracy, sensitivity and F1-score for each of the
classes, a ranking report was made, as shown in Table 1.4.

In addition, ROC (Receiver Operating Characteristic) curves [40], which is a
graphical representation of the sensitivity (ratio of true positives) versus the pro-

Edit the language of the figures

Suggestion: 
Two experiments were carried out: the first involved training the networks with the original images, and the second used a dataset augmented with SMOTE-balanced images of the dermatofibroma class.

improving

Suggestion: ... and the results are shown in Figure 1.11.

Suggestion: 
Eliminate
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Fig. 1.10 Loss results without SMOTE (left), with SMOTE (right)

Fig. 1.11 Validation confu-
sion matrix

Table 1.4 Classification report by category

Class Precision Sensitivity F1-score Number of
(%) (%) (%) Images

Actinic keratosis 83 66 73 154
Basal carcinoma 76 80 78 192
Benign keratosis 79 75 77 247
Dermatofibroma 66 61 64 44
Melanocytic nevi 93 95 94 255
Accuracy (%) 83 1121

portion or ratio of false positives (1-specificity) for a binary classifier system as the
discrimination threshold (value at which it is decided that a case is a positive) is
varied [34], were also used for the evaluation. The results of the proposed classifier
including the values of the area under the ROC curve can be seen in Figure 1.12.

Overall global accuracy performance was 73% without SMOTE and 83% with
SMOTE, representing a 10% improvement overall. It can be concluded from the
ROC plots that there is an AUC greater than 92% in each of the classes.

eliminate

Suggetion: ... are shown

Suggestion: .. observed
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Fig. 1.12 ROC curve plots for the classification of the different classes of lesions without SMOTE

As an experiment, the app was evaluated by taking images that are not in the
database, taking the image with the cell phone pointing to the computer screen,
where a validated sample of each of the classes was presented, the result is shown
in Figure 1.13.

a) Dermatofibroma b) Melanocytic nevi c) Melanoma

d) Actinic Keratoses e) Benign keratosis f) Basal cell carcinoma

Fig. 1.13 App test with images outside the databases, taken on the computer screen

1 - specificity

Are there ROC curve graphs of the model in which SMOTE was used?

Suggestion: Test of the application using images external to the database, taken from a computer screen
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Figure 1.13 showed an effective classification response in new data, especially
considering that all the evaluations except item ”d” were correct at the first attempt
with low resolution images without requiring any equipment other than the cell
phone. In the case of item ”d” the correct answer was obtained until the second
attempt and this may be due to the fact that the first image evaluated for this case
presented other figures such as hair and part of an eye, this result is shown in Figure
1.14.

Fig. 1.14 Erroneous eval-
uation at the first attempt,
inciting basal carcinoma, ac-
tually being actinic keratosis

The average response time when introducing an image to the model in the appli-
cation is 2.35 seconds, the image acquisition time is 6.58 seconds so that on average
an express analysis took an average time of 9.33 seconds.

1.4 Conclusions

SMOTE balancing proved to be a great tool to generate artificial data when there is
a scarce amount of data. It was demonstrated that this technique promotes a higher
convergence speed when training, in spite of having a higher variance in the training.
It was possible to improve the overall performance global accuracy of 73% without
SMOTE and 83% with SMOTE, representing an improvement of 10% in general,
in addition, it can be concluded from the ROC graphs that there is an AUC greater
than 92% in all classes.

It was possible to create a low weight model (284MB) and transform it to tensor-
flowlite format to be applicable to an Android cellular device, reducing its weight to
110.5MB, which showed compatibility and fast response.

We were able to develop an on-device application with a simple interface that
allows classifying between six different skin marks using the cell phone camera, as
well as images found in the data gallery, which shows a great response in synthetic

Suggestion: In the case of item 'd,' the correct answer was obtained on the second attempt. This may be because the first image evaluated included other elements, such as hair and part of an eye. This result is shown in Figure 1.14.

memory ??

Suggestion: An on-device application was developed with a simple interface, capable of classifying six different types of skin marks using either the cell phone camera or images from the gallery. The application demonstrated good performance with both synthetic data and real cases of moles, as noted in the limitations section. It exhibited an average latency of 9.33 seconds.
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data and real cases of moles in the test subject mentioned in the limitations section.
The application demonstrated an average latency or reaction time of 9.33 seconds.

Overall accuracy results of 83% were achieved with validation data, which sur-
passes Dai Xaingfeng’s first approach (accuracy of 72.4%) [17]. The proposed model
competes with the application developed by Kousis et al. [33] (91.1% accuracy) for
two classes of lesions classified as benign or malignant.; as well as with the approach
using a 3D curvature pattern highlighting and convolution technique for melanoma
diagnosis 89.2% accuracy by Yu Zhou [43], which requires photometric stereo
equipment for its operation. Finally, it is comparable to the model proposed by B.
Krohling, et al. [20], based on convolutional networks with evolutionary algorithms
making use of data in the patient file, which achieved a final accuracy of 89%.

It is important to mention that all the previously mentioned works are only to
evaluate the melanoma class in a binary way (positive/negative), while this work
presents a solution to classify six different classes, where an F1-score of 83% was
achieved in the melanoma class, with a sensitivity of 89%; at the same time the
system showed an F1-Score of 94% to identify moles with a sensitivity reaching
95%. It is important to mention the area of opportunity that exists to increase the
performance of the model for the identification of the rest of the lesions, whose
accuracy values were low, as in the case of dermatofibroma in which only 66% was
reached. One way is to explore other neural network architectures and/or models that
allow the extraction of relevant features from the images together with the use of
other types of classifiers. We were able to develop a cell phone application capable of
classifying skin cancer images with a model based on a convolutional architecture;
this model achieved an overall accuracy of 83% with test data.
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