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Abstract Detecting and identifying anomalies that cause significant deviations from
expected supply chain operations is important for maintaining efficiency and pre-
venting major disruptions in the flow of materials and products. The identification
and addressing of these anomalies allows companies to ensure smooth operations,
minimize delays, reduce costs, and improve supply chain performance. Thus, ef-
fective anomaly detection helps to mitigate risks and maintain the reliability of
supply chain processes. This chapter focuses on anomaly detection in the context
of smart manufacturing through the use of an Intelligent Decision Support System.
The proposed system consists of a prediction subsystem that, in turn, feeds a system
dynamics model that simulates the states of the industrial plant. Additionally, it uses
a deep learning-based network with an attention mechanism to detect disruptions. In
simulation studies, the network is compared against other methods, demonstrating
superior performance in the task of disruption detection. Thus our approach not only
enhances the accuracy of anomaly detection but also could improve the efficiency
and resilience of the supply chain management process.
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1 Introduction

Supply chain management is an important component for the success of any company
that relies on the production and distribution of goods. In this context, identifying
anomalies, which are significant deviations from the expected, is essential to maintain
efficiency and avoid significant problems that can disrupt the flow of materials and
products [9]. With technological advancements, intelligent decision support systems
(IDSS) have been developed that use advanced techniques to detect these anomalies
and better manage the supply chain, especially in disruptive situations [29]. Similarly,
disruptions can also be considered anomalies, as they are unexpected events that can
alter the normal functioning of the supply chain. Examples include natural disasters,
labor conflicts, production failures, logistical problems, etc. These disruptions have
significant negative impacts, such as delays in product delivery, increased logistical
costs, and overall customer dissatisfaction. Therefore, it is imperative to have systems
capable of anticipating and reacting to these events [27]. According to Tarei et al.
[42, 43], supply chain risks have repercussions in the form of low production, lost
sales, and delayed deliveries. Ivanov [17], on the other hand, focuses on preventing
supply chain risks using simulation models that show the impact on order delivery. In
Industry 4.0, intelligent devices that process information in real time are integrated
into the supply chain to identify potential risks between demand and suppliers
through the implementation of a decision support system (DSS) that helps managers
to have better coordination by predicting demand with real-time data, as well as the
maximum inventory level.

Predicting supply chain disruptions helps managers determine the maximum
inventory level to deal with transportation and production delays. Conversely, the
cost of not anticipating a disruption, specially a major outbreak like COVID-19, had
significant economic impacts, including the immediate and widespread disruption of
the global supply chain as revealed in the study by [32]. As noted by Wang et al [48],
supply chain disruptions are caused mainly by uncertainty in demand, suppliers, and
deliveries. Another study presented in [38], suggests that supplier disruption can also
result from decreased capacity or bankruptcy, while Yin et al. [52] mentions that
transportation disruption affects the flow of both finished products and materials in
the supply chain. Thus, using a DSS that analyses these factors in a disruptive supply
chain could be an efficient tool for risk analysis, as argued in Ali et al. [2]. In [33] it is
proposed a DSS for dynamic risk analysis. Tsiamas et al. [47] propose a simulation
model with DSS to improve decision-making and respond to anticipated supply chain
disruption, relying on a historical database available. Andry et al. [3] developed a
DSS to improve supply chain processes. Teniwut and Hasym [45] proposed a DSS
that helps to increase efficiency, profitability and customer satisfaction in the supply
chain of components. The implementation of the DSS in the supply chain requires
the entry of orders, sales, transactions and safety stock. Please, note that in this work,
the terms “anomaly” and “disruption” will be used interchangeably.

Based on the previous literature review, this chapter describes a proposal to use
a IDSS focused primarily on anomaly/disruption detection in the context of smart
manufacturing. It utilizes prediction modules and system dynamics modeling, as
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well as a deep learning-based architecture for disruption detection. The purpose is
to enhance the efficiency, reliability, and responsiveness of supply chains. The main
contributions of this work are:

• A DSS that utilizes a prediction system to feed a system dynamics model, predict-
ing future states of the industrial plant and the subsequent detection of disruptions
through artificial neural networks.

• The design of a system dynamics model specifically tailored for the metalworking
industry, focusing on a supplier manufacturing membranes for automobiles.

• The development of a new deep learning architecture that employs a layer for
sequential data processing using convolutional networks, GRU, and an attention
mechanism for disruption detection.

2 Background

This section provides an overview of smart manufacturing and the disruptions af-
fecting supply chains. It also discusses the use of anomaly detection in Decision
Support Systems.

2.1 Supply chain management conceptualization

The supply chain is a concept that involves coordinating activities related to the
production and delivery of products and services from suppliers to the final cus-
tomer [31], facilitated through information flows and transactions across the entire
logistics network. Some authors describe it as an internal network within an orga-
nization that facilitates the delivery of finished products or services to customers
through various processes, starting with the purchase of materials and continuing
with design, planning, production, and logistics management to ensure they reach
their destination. This requires the flow of information, goods, products, money, and
transactions from suppliers to consumers [35]. It is a complex network involving the
flow of goods, services, information, and customers. Its main characteristics include
material specifications, organizational structure, and regulatory frameworks, all of
which influence supply chain traceability. Understanding these characteristics is key
to achieving transparency, sustainability, and accountability [40].

The supply chain enables value creation, logistics management, synchronization
with demand, and performance evaluation [26]. Supply chain management refers to
the coordination of activities in the production and distribution of goods and services
from suppliers to customers. This is achieved through the collaboration of various
entities to ensure the efficient movement of products, overcoming demand variability
and the risk of product obsolescence, as seen in the automotive sector [1].
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2.1.1 Importance and relationship of supply chain with smart manufacturing

Today, addressing the supply chain alongside smart manufacturing is increasingly
common due to their interconnection. On one hand, the former deals with aspects of
Industry 4.0, which involves elements like machines, products, and people in supply
chain and manufacturing processes [25]. On the other hand, the latter focuses on
logistical operations from suppliers to final customers, utilizing technologies such
as IoT, cloud computing, intelligent management theories, system automation, and
interconnected work across all collaborating companies [50].

The integration of technologies into the supply chain has allowed companies to
improve agility, customization, and responsiveness to changes and disruptions [14].
Convergence is achieved when digital twins and collaborative models for smart man-
ufacturing, such as product development or lifecycle analysis, are applied [41, 20].
Additionally, there is greater confidence in the management of goods and products,
as well as enhanced traceability and transparency throughout the entire supply chain
[12].

Supply chain and smart manufacturing are closely related when approached from
the perspective of Industry 4.0. For example, smart manufacturing refers to the incor-
poration of technologies to digitize processes within a company through extensive
real-time data collection and analysis. This requires connectivity for information
monitoring via IoT, cloud computing, and technologies like blockchain. This leads
to the concept of an intelligent supply chain, given its positive impact on improving
agility, efficiency, and quality throughout the supply chain. By adopting the princi-
ples of Industry 4.0 and smart supply chain management, companies can maintain
their competitiveness in a dynamic business environment. Therefore, it is impor-
tant to leverage cutting-edge technologies to enhance efficiency and transparency in
production processes while adhering to the contemporary industrial approach [23].

2.2 Disruption in the supply chain

Next, we will review some studies that analyze and suggest solutions to reduce
the impact of disruptions and their associated effects. The work of [51] evaluated
the impact of transportation disruption on the second link of the supply chain,
which impacts the service level. In [7] system dynamics is used to analyze the
effects of terrorist acts on the performance of the supply chain at a global level and
highlight the increase in inventory by 600% due to the increase in security measures
on the border with Mexico. In [36] it is proposed a system dynamics model to
analyze the probability of machine failure due to a shortage of spare parts inventory,
which impacts the delivery of finished products. The study in [46] evaluates supplier
disruption considering backorders using system dynamics. In [5] system dynamics
and genetic algorithms are integrated to reduce the bullwhip effect in the supply
chain and optimize inventory and demand forecasting values, as well as inventory
costs, backorder costs. The work of [24] analyze the domino effect in the supply chain
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using system dynamics considering inventory level, backorders, and demand. In the
study of [30] it is developed a model to quantify the domino effect in the supply chain
with a proactive approach using system dynamics that impacts service level, costs,
profitability, and inventory levels. In [10] it is analyzed the impact of COVID-19 on
the disruption of material flow using system dynamics, which influences changes in
inventory level. The study of [13] visualizes the domino effect in the supply chain,
characterized by severe disruptions due to risks in demand, suppliers, and logistics
using system dynamics. The work of [21] considered the impact on service level. In
[18] it is proposed that to mitigate supply chain disruption, suppliers must increase
their production capacity and safety stock, and also consider supplier delays due to
material shortages and changes in demand. Finally in [6] it is analyzed the domino
effect in the supply chain to maximize post-pandemic customer satisfaction using
system dynamics.

2.3 Anomaly detection and DSS

In the supply chain, anomalies could originate from the disruption in the supply of
raw material shared and transferred among supply chain members, whether related
to orders, products, or other factors. This leads to misleading decisions within
companies regarding production or inventory levels [11]. Other studies attribute
anomalies to equity levels in the supply chain, specifically when dominant companies
gain more profit compared to subordinate companies, affecting internal decisions
[49].

Anomalies also arise due to the complexity of supply chains, involving multiple
customers, suppliers, and consumers. This complexity leads to disruptions in logisti-
cal operations, inaccuracies in inventory, and demand fluctuations [4]. For example,
the bullwhip effect amplifies variations and is a common anomaly with negative
impacts on inventory management. In [22] it is noted that supply chain anomalies
can also result from delays at ports or airports, inflation, or material shortages due
to the complexity and global involvement in current supply chains.

When anomalies occur in the supply chain, they increase costs, cause product
delivery delays, and decrease operational efficiency and performance. Detecting
anomalies in supply chain management is important for preventing problems and
optimizing efficiency. In [27] it is highlighted the importance of identifying these
instances on time, which can improve the response of the managers to make decisions
that improve the scenario in the face of disruption.

Due to the problems caused by anomalies and disruptions in the supply chain,
several studies have proposed using DSS to anticipate and improve responses to
these events. For example in [34], a knowledge-based IDSS is proposed for man-
aging operational risks in global supply chains. Their system predicts supply chain
performance by employing artificial neural networks alongside particle swarm op-
timization. It also identifies risk sources using principal component analysis and
assesses risk mitigation options using a digraph-matrix approach combined with
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principal component analysis. In the work of [16] it is proposed a fusion IDSS which
employs data envelopment analysis and rough set theory to make an analysis of
the risks in the supply chain. The study in [37] proposed the use of ontology for
the design of a IDSS to improve supply chain resilience against disruptions. They
used semantics and ontology to develop a basic knowledge base of the supply chain
network. Their knowledge base uses the semantic web rules language to encode
properties types and classes and sub-classes in the supply chain. Additionally they
used mixed integer linear programming to optimize a quantified resilience objective
function. To solve the problem they employ a hybrid particle swarm optimization
with differential evolution. In [44] it is developed a DSS to assist in the selection
of strategies for risk management. Their system uses a rule-based fuzzy inference
system to model the decision variables in the DSS.

3 Methodological design

The objective of this research is to address anomaly detection in the supply chain
using a DSS that integrates system dynamics modeling and machine learning algo-
rithms to predict abnormal behaviors. This approach aims to enable early detection,
allowing for timely correction of errors. The Fig. 1 shows the general outline of the
proposed IDSS.

3.1 IDSS for disruption detection

In this chapter, an IDSS has been chosen due to its ability to handle large volumes of
data and improve decision-making accuracy. The increasing complexity of modern
supply chains and the frequency of disruptions necessitate advanced tools for effec-
tive management. The proposed system will primarily focus on disruption detection,
but it will also offer other key process indicators. This section provides a detailed
description of the IDSS shown in Fig. 1, including its components and functionality.

3.1.1 Information Sources Module

The first component of the IDSS is the information sources. In this case, various
sources have been selected such as historical data, real time data, and external
and trend data. Historical data is important for analysis and strategic decision-
making, as it helps identify patterns, trends, and areas for improvement, as well
as to predict future behaviors and plan more efficiently. Historical data consists of
detailed records collected over time on various activities and operations within the
industry. These data can include production and sales volumes per period, order and
delivery history, inventory levels of raw materials, work-in-progress, and finished
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products, purchase history of raw materials and components, shipping and delivery
history, among others. In this IDSS, particular emphasis will be placed on the
shipping and delivery history by monitoring shipping rates and receiving delays. In
addition to historical data, real-time monitoring of the company’s daily operations
will also be conducted. Additionally, external and trend data are analyzed since
these data provides information about market conditions, competitor activities, and
economic trends. This helps businesses understand their competitive landscape and
identify opportunities and threats. We also consider trend data in order to help to
identify long-term shifts in consumer behavior, technological advancements, and
industry standards. By processing these trends, the IDSS can adapt their strategies
and scenarios for better decision support.

3.1.2 Risk Analysis Module

This module contains the system’s prediction models, which include a time series
prediction model and a system dynamics model. The prediction model takes time
series data from the Information Sources Module as input. The module can predict
future time series data over a specified prediction horizon, providing possible future
scenarios. Additionally, the prediction output can feed into the system dynamics
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model, which can simulate the behavior of other industrial plant processes based on
the prediction horizon.

The prediction system is not implemented in this chapter as there are already
well-established techniques in the literature, from classical methods like exponential
smoothing and Autoregressive Integrated Moving Average (ARIMA) to modern
techniques based on Deep Learning, such as Facebook’s Prophet [28, 39]. Since we
are particularly interested in disruption detection, the prediction system will take
receiving delays and receiving rates as input, and use system dynamics modeling to
simulate future shipping rates. This simulation will then be used by the proposed
Deep Learning network for disruption detection. A block diagram of the operation
of this module is shown in Fig. 2.

3.1.3 System dynamics model

In this section is presented the design of the system dynamics model. The model is
tailored to the metalworking industry, specifically a supplier manufacturing mem-
branes for automobiles.

Fig. 3 shows the causal diagram of the disruptive model used to describe potential
causes and effects through dynamic hypotheses that help determine the system’s
behavior over time. It establishes a feedback loop between two or more variables
that are related either positively or negatively. Arrows indicate a positive relationship
when an increase in one variable leads to an increase in the other, represented by a
positive feedback loop (R). Conversely, a negative relationship is indicated when an
increase in one variable leads to a decrease in the other, represented by a negative
feedback loop (B). The causal model is constructed to determine the relationship
between the variables of interest: Buying Rate, Membrane Orders, Receiving Rate,
Membrane Inventory, Shipping Rate, and Reorder Point.

Fig. 2 Block diagram for the module using the predictor and the system dynamics model
.
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• B1: Shipping Rate: If the shipping rate increases, the membrane inventory level
decreases. If the membrane inventory level increases, the shipping rate decreases.

• B2: Receiving Rate: If the receiving rate from the supplier increases, the number
of membrane orders placed with the supplier decreases.

• B3: Membrane Inventory Level: If the buying rate decreases, the number of orders
placed with the supplier increases. Consequently, the receiving rate of orders in the
raw materials warehouse increases, leading to an increase in membrane inventory
levels.

• R1: Buying Rate: If the buying rate increases, the reorder point increases under a
continuous review policy. If the reorder point increases, the buying rate from the
membrane supplier also increases.

Fig. 4 illustrates the simulation model using a system dynamics approach. The
model includes two stock variables: ”Membrane Orders” and ”Membrane automotive
Inventory.” It assumes a requested quantity of 100,000 membranes from the supplier,
with an initial membrane inventory set to zero. The flow variables are:

• Buyer’s Order Rate: This is the difference between the reorder point and the
membrane inventory, adjusted for a two-month delay due to the global steel
shortage. The reorder point is the minimum inventory level at which a new
order is placed with the supplier. The demand follows a normal distribution with
a monthly average of 100,000 membranes and a standard deviation of 4,000
membranes. The supplier takes two weeks (0.5 months) to deliver an order, with

Fig. 3 Causal diagram of the proposed system dynamics model
.
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a 95% safety factor to meet the customer’s demand. The safety stock level is set
at 1,200 membranes.

• Receiving Rate: This represents the rate at which materials enter the raw material
warehouse. It is calculated as the number of membranes ordered from the supplier
divided by the delay in receiving materials due to transportation delays from the
supplier to the company.

• Shipping Rate: This indicates the rate at which prepared membranes are shipped
to the customer. It is determined by dividing the membrane inventory level by the
proportion of membranes released by the customer, which ranges from 0.05 to
0.125.

The flow variables are represented by arrows, while parameters such as delivery time,
delay adjustments, and the membrane release rate by the customer are represented
by circles.

Fig. 4 Proposed system dynamics model
.
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3.1.4 Anomaly detection Module

In this module, a neural network architecture is proposed for the detection of dis-
ruptions. To do this, the shipping rate will be evaluated in search of any pattern that
may indicate the beginning of a disruption.

Let 𝑋 = {𝑥𝑛}𝑁𝑛=0 be the time variation in the shipping rate, the task of the proposed
network architecture is to detect a disruption from samples 𝑥𝑛 from 𝑋 . In terms of
machine learning a sample 𝑥𝑛 will be classified as part of a disruption o not. In
order to provide context for 𝑥𝑛 the input to the network is a subsequence, 𝑋𝑛 of 𝑋 ,
where 𝑋𝑛 = {𝑥𝑛−𝐿−1, ..., 𝑥𝑛−2, 𝑥𝑛−1, , 𝑥𝑛} and 𝐿 is the size of the subsequence. Fig.
5 illustrate this process.

For the construction of the network architecture it is selected as input layer
a convolutional element. The convolutional layer is capable of obtain rich features
from the input. This layer convolved the input subsequence 𝑋𝑛, with several kernels or
filters with learnable parameters. The output tensor consist of a series of feature maps
that help in the process of classification of the following layers in the network. For the
case of the proposed network architecture we used a one dimensional convolutional
layer with five filters o kernels, each of size two, also we fix the length of the input
subsequence to 𝐿 = 14. Once that the input sequence is transformed into a sequence
of features found by the convolutional layer, it is processed by a Gated Recurrent Unit
(GRU) layer [8]. The GRU processes the input data allowing information contained
in the sequence to be selectively remembered or forgotten over time. Thus, allowing
to handle long-term dependencies in sequential data by selectively remembering and
forgetting previous inputs. Here we used a GRU with 24 units, the output of the
GRU is passed to an attention layer, these layer are know to selectively focusing on
important elements of the input tensor emphasizing relevant information for the next
layer to improve the classification performance. The output of the attention layer is
concatenated with the output of the previous convolutional layer to obtain a richer
feature tensor. This tensor is passed to dense network consisting of four layers of
80, 20, and 5 neurons respectively, all with ReLU activation functions, and finally
the final classification is done by a neuron with sigmoid activation function, which

Fig. 5 Construction of the input tensor from the sample to classify and its context
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classifies the input in disruption or not disruption. The complete architecture is show
in Fig. 6.

Fig. 6 Proposed deep learning architecture. From a time series input, it is able to detect whether
or not there are disruptions

3.1.5 Decision and response module

The decision and response module is designed to aid decision-makers in identifying
optimal actions and responses based on analyzed data and predicted scenarios.
This module plays an important role in translating insights from data analysis into
actionable decisions and is attached directly to the dashboard.

3.2 Metrics for disruption detection

To evaluate the performance of algorithms for abnormality/disruption detection, the
following metrics are generally used.

Sensitivity

This metric evaluates how good a given model is at identifying disruptions as a
percentage of all disruptions days in the data. It evaluates the proportion of dis-
ruption days that the method is able to correctly identify. This metrics is also called
recall and is calculated as follows

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑃
(1)
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Where TP are the true positives, in this context, these are the days classified as
disruption days by the detector that are indeed disruption days, and P are the total of
disruption days.

Specificity

This metric evaluates the detector’s ability to identify days of no disruption as a
percent of all of the observations without disruptions. This metric is calculated as

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑁
(2)

Where 𝑇𝑁 are the true negatives, in this case the days detected as non disruption
days, and 𝑁 are the number of days without disruption.

Miss rate

Also known as false negative rate and is an estimate of the probability that a true
disruption day will be missed by the test. It is calculated as

𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 =
𝐹𝑁

𝑃
(3)

Where 𝐹𝑁 are the false negatives.

Fall-out

Also called false positive rate or probability of false alarm. This metric measures the
proportion of non-disruption days that were incorrectly identified as disruption that
is false alarms. The fall-out is given by

𝐹𝑎𝑙𝑙 − 𝑜𝑢𝑡 =
𝐹𝑃

𝑃
(4)

Where 𝐹𝑃 are false positives, that is false disruption days.

4 Results

In this section, we validate the Deep Learning architecture for disruption detection.
We generated data by simulating disruptions in the supply chain using the system
dynamics model. Specifically, we simulated a total of 1,200 days and introduced six
disruptions in the receiving delay. These disruptions are modeled using ramp func-
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Table 1 Detail of the disruptions

Disruptions Begining Days Slope

Disruption 1 200 20 0.7
Disruption 2 350 20 0.55
Disruption 3 500 40 0.85
Disruption 4 650 20 0.35
Disruption 5 1000 15 0.55
Disruption 6 1100 15 0.75

tions with varying slopes and number of days. Table 1 provides detailed descriptions
of each disruption, and Fig. 7 illustrates a segment of the simulated data depicting
one of these disruptions. This will be the input to the system dynamics model, from
which in turn the shipping rate will be taken as input to the neural network. Note that
in this way the network can work with data that is not directly measured or with data
with which it was not trained. This allows the network to be reused with different
data.

The proposed algorithm for disruption detection was compared with two other
methods: one based on support vector machines (SVM), commonly used in detection
literature [15], and another using autoencoders based on LSTM (LSTM AC) [19].
For the SVM, a regularization parameter of one and a radial basis function (RBF)
kernel were used. No optimization was done to adjust further the hyperparameters.
The LSTM-based network used two LSTM layers with 104 units each; the first was
in sequence-to-sequence mode, and the second returned only the last output. The
decoder had the same configuration, but at the end, a dense network with four layers

Fig. 7 Simulation data, a disruption is observed that begins on day 350 with an approximate
duration of 20 days.
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consisting of 150, 50, 10, and 1 neuron was used. All layers had ReLU activa-
tion, except for the last one, which used a sigmoid activation function. To build the
training and test sets, the data from the systems dynamics model were divided into
subsequences of 14 samples. If a subsequence contained days within the disruption,
it was labeled as a disruption; if the subsequence contained no days from the dis-
ruption, it was labeled as non-disruption. Note that, in this way, there may be more
subsequences labeled as disruptions than the number of simulated disruptions. For
training all methods, 70% of the simulated data was used, while the remaining 30%
was reserved for testing.

Fig. 8, shows the confusion matrices obtained by the different methods. The test
data contained two disruptions of 15 days each, while the rest of the days contain not
disruptions. The proposed method is the one that correctly detected the most days of
disruption, while the SVM method is the one that correctly detects the least number
of days of disruption, only 13 of the 30 days with disruptions.

(a) (b)

(c)

Fig. 8 Confusion matrices of the different methods: (a) SVM, (b) LSTM AC, and (c) proposed
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Table 2 Metrics of the different methods

Detector Sensitivity Specificity Miss rate Fall-out

SVM 0.43 0.98 0.56 0.013
LSTM AC 0.6 0.99 0.4 0.006
Proposed 0.8 0.98 0.2 0.010

Table 2 presents metrics summarizing the performance of each method. Our
proposed method achieved the highest sensitivity at 0.8, indicating its superior ability
to identify disruption days. The LSTM AC method followed with a sensitivity of 0.6,
which is lower than our proposed method. For the specificity metric, all methods
performed well, with LSTM AC achieving the highest score of 0.99, closely followed
by SVM and our proposed method at 0.98. The proposed method also showed
the lowest Miss rate at 0.2, meaning it detected most disruption days correctly. In
comparison, LSTM and SVM had higher Miss rates of 0.4 and 0.56, respectively.
All methods exhibited low fall-out rates (probability of false alarm), with LSTM
achieving the lowest.

5 Conclusions

In this chapter was presented an approach to anomaly detection in smart manufac-
turing using an Intelligent Decision Support System. The proposed IDSS uses a
prediction system to feed a system dynamics model, predicting future states of the
industrial plant and the subsequent detection of disruptions through artificial neural
networks. The integration of system dynamics modeling and deep learning algo-
rithms allows for a more comprehensive understanding of the complex interactions
within the supply chain, facilitating better decision for planning. The proposed deep
learning-based network that incorporated an attention mechanism, has proven to be
effective in identifying disruptions within the supply chain. In comparisons it was
demonstrated that the proposed approach outperforms the other methods for the task
of disruption detection. The designed model using system dynamics was tailored for
the metalworking industry, specifically for a supplier manufacturing membranes for
automobiles, however, underscores the practical applicability of this research, and
the model can be adapted and applied to other industries or manufacturing contexts.
The work presented in this chapter could contribute to the advancement of smart
manufacturing by providing a new tool that enhances the efficiency, reliability, and
responsiveness of supply chains, by proactively detecting and addressing anomalies.

Based on the results obtained in this research on anomaly detection in smart
manufacturing using an IDSS, several directions for future work can be explored.
One possibility is the expansion of the system to other industries, focusing on
the adaptation and validation of the system dynamics model and deep learning
architecture for different sectors. Additionally, improving deep learning algorithms
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could involve investigating hybrid architectures that combine various sequential data
processing techniques, such as Transformers and LSTM. Finally, the integration of
real-time data sources, such as IoT sensors and enterprise information systems, could
enhance the IDSS’s ability to detect and respond to anomalies.
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